Sie sind hier
E-Book

Philosophie der Mathematik

AutorThomas Bedürftig, Roman Murawski
VerlagWalter de Gruyter GmbH & Co.KG
Erscheinungsjahr2010
Seitenanzahl333 Seiten
ISBN9783110220605
FormatPDF
KopierschutzWasserzeichen/DRM
GerätePC/MAC/eReader/Tablet
Preis99,95 EUR

An elementary introduction to the philosophy in mathematics.



Thomas Bedürftig, Leibniz University Hannover; Roman Murawski, Adam Mickiewicz University, Posnan, Poland.

Kaufen Sie hier:

Horizontale Tabs

Leseprobe

Kapitel 3 Über Grundfragen der Philosophie der Mathematik (S. 138-139)

Auf dem Weg zu den reellen Zahlen im Kapitel 1 haben sich mathematisch-philosophische Fragen ergeben, auf die wir in unserem Überblick über die Geschichte der Philosophie der Mathematik im Kapitel 2 immer wieder stießen. Sie gehören zu den Grundfragen der Philosophie der Mathematik. Wir wollen diese Fragen jetzt neu aufnehmen und Antworten suchen, in denen wir uns an den im Kapitel 2 geschilderten Positionen, Konzepten und Richtungen orientieren. So verschieden die Positionen waren, so verschieden werden die Antworten sein.

Wir gehen zuerst noch einmal zusammenfassend auf die Frage nach den Zahlen ein, über die wir diverse Ansichten kennengelernt haben, behandeln die unterschiedlichen Haltungen dem Unendlichen gegenüber, verfolgen historische und aktuelle Auffassungen zum klassischen Kontinuum, in denen die Frage nach dem unendlich Kleinen, den Infinitesimalien auftaucht, betrachten das Verhältnis von Größen und Zahlen und beobachten, wie das anschauliche Kontinuum und die Größen aus der Mathematik ihren Abschied nehmen. In einem Rückblick am Ende dieses Kapitels greifen wir noch einmal auf der Basis der gewonnenen Einsichten direkt die Fragen auf, die uns im Kapitel 1 begegneten.

3.1 Zum Zahlbegriff

Die erste fundamentale Frage war und ist die nach den natürlichen Zahlen. Bei ihnen beginnt der Weg zu den reellen Zahlen. Was sind diese natürlichen Zahlen, was ist ihr Wesen, was die Art ihrer Existenz? Wir haben die unterschiedlichen Ansichten über die natürlichen Zahlen, wenn diese erkennbar waren, in unseren Schilderungen der vielen mathematikphilosophischen Positionen im Kapitel 2 hervorgehoben. Wir haben so ein breites Panorama von Meinungen über diesen fundamentalen mathematischen Gegenstand vor uns, das von vieldeutiger Mystik bis in die völlige Bedeutungslosigkeit reicht.

Wir blicken noch einmal zurück, beschränken uns dabei auf einige wesentliche Ansichten, rekapitulieren in Kurzform die Charakterisierungen, über die wir berichtet haben, und ziehen schließlich vor diesem Hintergrund ein Resümee. Rationalistische Elemente, die Strukturen des Denkens berücksichtigen, heben wir im folgenden Abriss nicht gesondert hervor, da zumindest Spuren davon in fast allen Auffassungen zu finden sind.

3.1.1 Überblick über einige Ansichten

Zahlen waren bei den Pythagoreern Elemente einer höheren Welt, die auf die physischen Dinge wirkten und sie formten. Bei Platon stiegen sie ein wenig herab und vermittelten zwischen dem „Himmel der Ideen“ und der materiellen Wirklichkeit. Bei Aristoteles waren sie vollends in der Wirklichkeit angekommen und wurden zu Formkräften in den Dingen, die der Mensch in einer Art Abstraktion erkennt. Euklid charaktisiert die Zahlen kurz und mathematisch knapp als aus Einheiten zusammengesetzte Vielheiten. Für Nikolaus von Kues waren sie durch Vergleich und Unterscheidung gewonnene Rekonstruktionen der Zahlen, die von Gott in die Dinge gelegt sind. Kant verlegt die Zahlen ganz in die rationalen Strukturen des menschlichen Verstandes: Sie sind Schemata des Verstandes, die in der Anschauungsform der Zeit gegebene Einheiten zusammenfassen, und arithmetische Sätze über sie sind synthetische Urteile a priori. Der Empirist Mill bezog eine extreme Gegenposition: Zahlen haben einzig und allein ihren Ursprung in der Realität. Sie sind das Resultat sukzessiv wiederkehrender Empfindungen. Gauß verstand die Zahlen noch von den geometrischen Größen her. Sie waren ihre Vervielfacher. In Cantors Auffassung finden wir idealistische und empiristische Elemente: Zahlen sind einerseits ideelle Realitäten und andererseits Projektionen von Mengen und durch Abstraktion erworben. Dedekind denkt strukturell und hält Zahlen für Abstraktionen von Stellen in unendlichen Zählreihen. Für den Logizisten Frege sind Zahlen als Anzahlen Elemente der Logik, für den Intuitionisten Brouwer inhaltslose Abstraktionen des Zeitempfindens. Für den Konstruktivisten Thiel waren sie fiktive Gegenstände, die durch Abstraktion von den Zählzeichen in unterschiedlichen Zählzeichensystemen entstehen und für den Formalisten Hilbert im Grunde bedeutungslose Zeichen. Piaget und Damerow halten Zahlen für ordinale Bestandteile umfassende – Anzahlen, die in individuellen kognitiven Konstruktionen ausgehend von Handlungen an konkreten Objekten entstehen. In ihren Zeichensystemen, die auf die Zahlen zurückwirken, entdeckt Damerow Elemente einer sozialen und historischen Entwicklung.

Inhaltsverzeichnis
Vorwort8
Inhaltsverzeichnis10
Einleitung14
Kapitel 1. Auf dem Weg zu den reellen Zahlen19
Kapitel 2 Aus der Geschichte der Philosophie und Mathematik39
Kapitel 3. Über Grundfragen der Philosophie der Mathematik151
Kapitel 4. Mengen und Mengenlehren204
Kapitel 5. Axiomatik und Logik247
Kapitel 6. Rückblick287
Anhang Kurzbiographien298
Literaturverzeichnis312
Personenverzeichnis322
Begriffsverzeichnis328

Weitere E-Books zum Thema: Pädagogik - Erziehungswissenschaft

Selbstgesteuertes Lernen

E-Book Selbstgesteuertes Lernen

Studienarbeit aus dem Jahr 2009 im Fachbereich Pädagogik - Pädagogische Psychologie, Note: 1.3, Universität Mannheim, Veranstaltung: Psychologie des Lehrens und Lernens, Sprache: Deutsch, ...

Motivation lernen

E-Book Motivation lernen

»Wenn die Schüler nur etwas motivierter wären ...« - in deutschen Lehrerzimmern vergeht wohl kaum ein Tag ohne diesen Stoßseufzer. Was den meisten Lehrer/innen nicht bewusst ist: Motivation kann ...

Weitere Zeitschriften

arznei-telegramm

arznei-telegramm

Das arznei-telegramm® informiert bereits im 50. Jahrgang Ärzte, Apotheker und andere Heilberufe über Nutzen und Risiken von Arzneimitteln. Das arznei-telegramm®  ist neutral und ...

Ärzte Zeitung

Ärzte Zeitung

Zielgruppe: Niedergelassene Allgemeinmediziner, Praktiker undInternisten.Charakteristik: Die Ärzte Zeitung liefert 3 x pro Woche bundesweitan niedergelassene Mediziner den ...

Baumarkt

Baumarkt

Baumarkt enthält eine ausführliche jährliche Konjunkturanalyse des deutschen Baumarktes und stellt die wichtigsten Ergebnisse des abgelaufenen Baujahres in vielen Zahlen und Fakten zusammen. Auf ...

Berufsstart Bewerbung

Berufsstart Bewerbung

»Berufsstart Bewerbung« erscheint jährlich zum Wintersemester im November mit einer Auflage von 50.000 Exemplaren und ermöglicht Unternehmen sich bei Studenten und Absolventen mit einer ...

Bibel für heute

Bibel für heute

Kommentare, Anregungen, Fragen und Impulse zu Texten aus der Bibel Die beliebte und bewährte Arbeitshilfe für alle, denen es bei der täglichen Bibellese um eine intensive Auseinandersetzung mit ...

Gastronomie Report

Gastronomie Report

News & Infos für die Gastronomie: Tipps, Trends und Ideen, Produkte aus aller Welt, Innovative Konzepte, Küchentechnik der Zukunft, Service mit Zusatznutzen und vieles mehr. Frech, offensiv, ...

Deutsche Hockey Zeitung

Deutsche Hockey Zeitung

Informiert über das internationale, nationale und internationale Hockey. Die Deutsche Hockeyzeitung ist Ihr kompetenter Partner für Ihr Wirken im Hockeymarkt. Sie ist die einzige ...

Die Versicherungspraxis

Die Versicherungspraxis

Behandlung versicherungsrelevanter Themen. Erfahren Sie mehr über den DVS. Der DVS Deutscher Versicherungs-Schutzverband e.V, Bonn, ist der Interessenvertreter der versicherungsnehmenden Wirtschaft. ...

Euro am Sonntag

Euro am Sonntag

Deutschlands aktuelleste Finanz-Wochenzeitung Jede Woche neu bietet €uro am Sonntag Antworten auf die wichtigsten Fragen zu den Themen Geldanlage und Vermögensaufbau. Auch komplexe Sachverhalte ...