Sie sind hier
E-Book

Science of Synthesis: Asymmetric Organocatalysis Vol. 2

Bronsted Base and Acid Catalysts, and Additional Topics

AutorKeiji Maruoka
VerlagGeorg Thieme Verlag KG
Erscheinungsjahr2014
Seitenanzahl1010 Seiten
ISBN9783131790118
FormatPDF/ePUB
KopierschutzWasserzeichen
GerätePC/MAC/eReader/Tablet
Preis259,99 EUR
Asymmetric Organocatalysis 2 from the Science of Synthesis series gives an authoritative, broad overview of the field, compiled by 3 8 experts, as well as a critical presentation of the best organocatalytic and related methodologies available today for practical as ymmetric synthesis. It provides alternative, greener syntheses with simple and easily used catalysts helping avoid the use of expens ive and/or toxic metals. The reference work covers all the catalysts and reactions within the activation modes Brønsted base catalys is and Brønsted acid catalysis. Typical or general experimental procedures as well as mechanistic, technical and theoretical aspects are included, allowing the reader to clearly see how simple, clean and efficient this chemistry is. // The content of this e-book w as originally published in December 2011.

Kaufen Sie hier:

Horizontale Tabs

Blick ins Buch
Inhaltsverzeichnis
Science of Synthesis: Asymmetric Organocatalysis 2 – Brønsted Base and Acid Catalysts, and Additional Topics1
Organizational Structure of Science of Synthesis2
Science of Synthesis Reference Library3
Title page5
Imprint7
Preface8
Asymmetric Organocatalysis Volumes10
Abstracts12
Overview24
Table of Contents26
2.1 Brønsted Bases48
2.1.1 Chiral Guanidine and Amidine Organocatalysts48
2.1.1.1 Synthesis of 2-Aminoacetonitriles49
2.1.1.1.1 Catalytic Asymmetric Strecker Reactions49
2.1.1.2 Synthesis of Chiral Alcohols50
2.1.1.2.1 Catalytic Nitroaldol (Henry) Reactions50
2.1.1.2.1.1 Nitroaldol Reactions with a-Chiral Aldehydes53
2.1.1.2.1.2 Nitroaldol Reactions with a-Keto Esters54
2.1.1.2.2 Catalytic Asymmetric Aldol Reactions55
2.1.1.2.2.1 Aldol Reactions with Dihalofuran-2(5H)-ones57
2.1.1.3 Synthesis of Chiral Amines59
2.1.1.3.1 Catalytic Asymmetric Nitro-Mannich-Type Reactions59
2.1.1.3.1.1 Nitro-Mannich-Type Reactions with Nitroacetates63
2.1.1.3.1.2 Nitro-Mannich-Type Reactions with a-Substituted Nitroacetates64
2.1.1.3.2 Catalytic Asymmetric Mannich-Type Reactions65
2.1.1.4 Synthesis of Chiral Nitroalkanes67
2.1.1.4.1 Catalytic Asymmetric Michael Reactions67
2.1.1.4.1.1 Michael Reactions with ß-Keto Esters69
2.1.1.4.1.2 Michael Reactions with Phenols71
2.1.1.4.1.3 Michael Reactions with Nitroalkanes72
2.1.1.4.1.4 Michael Reactions with 4,7-Dihydroindoles73
2.1.1.5 Synthesis of Chiral Epoxy Ketones75
2.1.1.5.1 Catalytic Asymmetric Nucleophilic Epoxidation Reactions75
2.1.1.6 Synthesis of Chiral Hydrazines76
2.1.1.6.1 Catalytic Asymmetric Amination Reactions76
2.1.1.7 Synthesis of Chiral Phosphonates and Phosphine Oxides78
2.1.1.7.1 Catalytic Asymmetric 1,4-Addition Reactions78
2.1.1.7.1.1 1,4-Addition Reactions with Phosphites78
2.1.1.7.1.2 1,4-Addition Reactions with Phosphine Oxides79
2.1.1.8 Synthesis of Chiral d-Lactones80
2.1.1.8.1 Catalytic Asymmetric Inverse-Electron-Demand Hetero-Diels--Alder Reactions80
2.1.1.9 Synthesis of Chiral Pyrrolidines83
2.1.1.9.1 Catalytic Asymmetric [3 + 2]-Cycloaddition Reactions83
2.1.1.10 Synthesis of Chiral a-Keto Esters84
2.1.1.10.1 Catalytic Asymmetric Claisen Rearrangement Reactions84
2.1.2 Cinchona Alkaloid Organocatalysts88
2.1.2.1 Nucleophilic Catalysis89
2.1.2.1.1 Asymmetric Reactions with Ketenes90
2.1.2.1.1.1 Synthesis of ß-Lactones90
2.1.2.1.1.2 Intramolecular Synthesis of ß-Lactones91
2.1.2.1.1.3 Synthesis of ß-Lactams92
2.1.2.1.1.4 Synthesis of ß-Oxo Amides93
2.1.2.1.1.5 Asymmetric Synthesis of a-Halogenated Esters94
2.1.2.1.1.6 Cycloaddition of Ketenes and N-Thioacylimines95
2.1.2.1.2 Asymmetric Morita--Baylis--Hillman Reactions96
2.1.2.1.2.1 Synthesis of Hydroxy Acrylates97
2.1.2.1.2.2 Synthesis of Sulfonamido Enones98
2.1.2.1.3 Enantioselective Protonation99
2.1.2.1.3.1 Thiol Addition to Alkyl(silyl)ketenes99
2.1.2.1.4 Asymmetric Cyanation of Simple Ketones100
2.1.2.1.4.1 Synthesis of Cyanohydrin Carbonates100
2.1.2.1.5 Asymmetric Conjugate Additions101
2.1.2.1.5.1 Synthesis of tert-Butyl Cyclopropanecarboxylates102
2.1.2.1.5.2 Reaction of Indole with Morita--Baylis--Hillman Adducts102
2.1.2.1.5.3 Reaction of Furan-2-ones with Morita--Baylis--Hillman Adducts103
2.1.2.1.6 Asymmetric Electrophilic Halogenation of Alkenes104
2.1.2.1.6.1 Chlorolactonization of Pent-4-enoic Acid104
2.1.2.2 Enantioselective Base Catalysis105
2.1.2.2.1 Asymmetric Brønsted Base Catalysis105
2.1.2.2.1.1 Asymmetric Protonation of Silyl Enol Ethers106
2.1.2.2.1.2 Alcoholysis of Anhydrides in the Presence of a Cinchona-Derived Catalyst107
2.1.2.2.1.3 Alcoholysis in the Presence of a Substoichiometric Amount of Catalyst and a Stoichiometric Amount of an Achiral Base108
2.1.2.2.1.4 Enantioselective Alcoholysis of Monosubstituted Succinic Anhydrides by Parallel Kinetic Resolution109
2.1.2.2.1.5 Alcoholysis of Urethane-Protected a-Amino Acid N-Carboxyanhydrides by Kinetic Resolution111
2.1.2.2.1.6 Alcoholysis of 1,3-Dioxolane-2,4-diones by Dynamic Kinetic Resolution113
2.1.2.2.2 Asymmetric Lewis Base Catalysis114
2.1.2.2.2.1 Asymmetric Sulfinyl Transfer Reactions via Dynamic Kinetic Resolution of Sulfinyl Chlorides: Synthesis of Sulfinates in the Presence of a Stoichiometric Amount of Catalyst115
2.1.2.2.2.2 Synthesis of Sulfinates in the Presence of a Catalytic Amount of Catalyst and a Stoichiometric Amount of Achiral Base116
2.1.2.2.2.3 Fluorodesilylation of Allylsilanes: Synthesis of Chiral Alkyl Fluorides117
2.1.2.2.2.4 Conjugate Addition of Thiols to Cyclic Enones118
2.1.2.2.2.5 Conjugate Addition of 1,3-Dicarbonyl Compounds to Alkynones119
2.1.2.2.2.6 Conjugate Addition of 1,3-Dicarbonyl Compounds to Enones120
2.1.2.2.2.7 Conjugate Addition of Alkylidenemalononitriles121
2.1.2.2.2.8 Asymmetric Mannich Reaction of a-Substituted Cyanoacetates122
2.1.2.2.2.9 Asymmetric Aldol Reaction of Oxindoles with Trifluoropyruvate123
2.1.2.3 Acid--Base Cooperative Catalysis124
2.1.2.3.1 Asymmetric 1,2-Addition to Carbonyl Compounds124
2.1.2.3.1.1 Aldol Reaction of Cyclic Ketones124
2.1.2.3.1.2 Aldol Reaction of Acyclic Ketones125
2.1.2.3.1.3 Intramolecular Aldol Reaction of Diketones127
2.1.2.3.2 Asymmetric 1,2-Addition to Imines128
2.1.2.3.2.1 Hydrophosphonylation Reaction of Imines with Phosphites128
2.1.2.3.2.2 Reaction of ß-Oxo Esters with Imines129
2.1.2.3.3 Asymmetric Friedel--Crafts Reactions130
2.1.2.3.3.1 Reaction of Indoles and Trifluoropyruvate131
2.1.2.3.3.2 Reaction of Indoles with Aldehydes or Pyruvates132
2.1.2.3.3.3 Reaction of Indoles and Imines134
2.1.2.3.4 Asymmetric Fragmentation135
2.1.2.3.4.1 Enantioselective Fragmentation of Cyclic meso-Peroxides136
2.1.2.3.4.2 Desymmetrization of meso-Cyclopropane-Fused Cyclopentanones and Epoxycyclopentanones137
2.1.2.3.5 Desymmetrization of meso-Diols138
2.1.2.3.5.1 Monobenzoylation of meso-Diols138
2.1.2.3.6 Asymmetric Halolactonization139
2.1.2.3.6.1 Asymmetric Bromolactonization of Pentenoic Acids139
2.1.2.3.6.2 Asymmetric Bromolactonization of Z-Enynes140
2.1.2.4 Base--Iminium Catalysis141
2.1.2.4.1 Asymmetric Conjugate Additions141
2.1.2.4.1.1 Vinylogous Michael Addition of a,a-Dicyanoalkenes to Enones142
2.1.2.4.1.2 Conjugate Addition of Benzannulated Cyclic 1,3-Dicarbonyl Compounds to Enones143
2.1.2.4.1.3 Conjugate Addition of Nitrogen Nucleophiles to Enones144
2.1.2.4.1.4 Aziridination of Enones145
2.1.2.4.1.5 Epoxidation of Cyclic Enones146
2.1.2.4.1.6 Epoxidation of Acyclic Enones148
2.1.2.4.2 Asymmetric Conjugated Friedel--Crafts Alkylations149
2.1.2.4.2.1 Friedel--Crafts Addition of Indoles to a,ß-Unsaturated Ketones149
2.1.2.4.3 Asymmetric Diels--Alder Reactions150
2.1.2.4.3.1 Diels--Alder Reaction of 2H-Pyran-2-ones with a,ß-Unsaturated Ketones151
2.1.2.4.4 Semipinacol-Type 1,2-Carbon Migrations152
2.1.2.4.4.1 a-Ketol Rearrangement of Cyclic Hydroxy Enones to Chiral Spirocyclic Diketones152
2.1.2.5 Multifunctional Cooperative Catalysis154
2.1.2.5.1 Catalytic Asymmetric Peroxidations154
2.1.2.5.1.1 Reaction of a,ß-Unsaturated Ketones with Hydroperoxides154
2.1.2.5.1.2 Synthesis of Cyclic Peroxyhemiketals158
2.1.2.5.2 1,3-Dipolar Cycloadditions158
2.1.2.5.2.1 Cycloaddition of Cyclic Enones and Azomethine Imines159
2.1.2.6 Conclusion160
2.1.3 Bifunctional Cinchona Alkaloid Organocatalysts166
2.1.3.1 Bifunctional Cinchona Alkaloid Organocatalysts: Cooperative Catalysis167
2.1.3.1.1 Bifunctional Catalysts Based on 9-Urea and 9-Thiourea Cinchona Alkaloids167
2.1.3.1.2 Bifunctional Catalysts Based on 6'-Thiourea Cinchona Alkaloids183
2.1.3.1.3 Bifunctional Catalysts Based on 9-Squaramide Cinchona Alkaloids184
2.1.3.1.4 Cupreine and Cupreidine Derivatives as Bifunctional Catalysts187
2.1.3.1.5 ß-Isocupreidine as a Bifunctional Catalyst200
2.1.3.2 Bifunctional Cinchona Alkaloid Organocatalysts: Self-Association Problem203
2.1.3.2.1 Self-Association Phenomena of Bifunctional Organocatalysts203
2.1.3.2.2 Self-Association-Free Bifunctional Cinchona Alkaloid Organocatalysts204
2.1.3.2.2.1 9-Squaramide Dimeric Cinchona Alkaloids204
2.1.3.2.2.2 9-Sulfonamide Cinchona Alkaloids207
2.1.3.3 Conclusions212
2.2 Brønsted Acids216
2.2.1 Phosphoric Acid Catalyzed Reactions of Imines216
2.2.1.1 Nucleophilic Addition to Imines217
2.2.1.1.1 Mannich and Related Reactions218
2.2.1.1.2 Strecker Reaction224
2.2.1.1.3 Friedel--Crafts Reactions225
2.2.1.1.4 Ene-Type Reactions234
2.2.1.1.5 Allylation Reactions237
2.2.1.1.6 Carbon--Heteroatom Bond-Forming Reactions238
2.2.1.2 Cycloaddition to Imines243
2.2.1.2.1 Aza-Diels--Alder Reactions243
2.2.1.2.2 1,3-Dipolar Cycloaddition248
2.2.1.3 Transfer Hydrogenation of Imines252
2.2.1.3.1 Reduction of Imines252
2.2.1.3.2 Reduction of Quinolines259
2.2.2 Phosphoric Acid Catalysis of Reactions Not Involving Imines266
2.2.2.1 Reactions of Carbonyl Compounds266
2.2.2.1.1 Reactions of a,ß-Unsaturated Carbonyl Compounds267
2.2.2.1.1.1 Diels--Alder Reaction267
2.2.2.1.1.2 Friedel--Crafts Reaction269
2.2.2.1.1.3 Nazarov Cyclization274
2.2.2.1.1.4 Epoxidation276
2.2.2.1.1.5 Oxa-Michael Reaction279
2.2.2.1.1.6 Aza-Michael Reaction280
2.2.2.1.2 Reactions of Ketones and Aldehydes281
2.2.2.1.2.1 Aza-Ene-Type Reaction281
2.2.2.1.2.2 Carbonyl-Ene Reaction283
2.2.2.1.2.3 Allylboration284
2.2.2.1.2.4 Hetero-Diels--Alder Reaction286
2.2.2.1.2.5 Intramolecular Aldol Reaction (Robinson-Type Annulation)288
2.2.2.1.2.6 Baeyer--Villiger Oxidation289
2.2.2.2 Reactions of Hemiaminal Ethers and Acetals291
2.2.2.2.1 Reactions of Hemiaminal Ethers291
2.2.2.2.1.1 Aza-Ene Type Reaction291
2.2.2.2.1.2 Aza-Petasis--Ferrier Rearrangement295
2.2.2.2.2 Reactions of Acetals296
2.2.2.3 Reactions of Nitroalkenes298
2.2.2.3.1 Friedel--Crafts Reaction298
2.2.2.4 Reactions of Nitrones301
2.2.2.4.1 1,3-Dipolar Cycloaddition301
2.2.2.5 Reactions of Nitroso Compounds302
2.2.2.5.1 a-Hydroxylation of 1,3-Dicarbonyl Compounds302
2.2.2.5.2 a-Aminoxylation of Enecarbamates304
2.2.2.6 Reactions of Strained Small-Ring Compounds304
2.2.2.6.1 Ring Opening of Aziridines and Related Reactions304
2.2.2.7 Reactions of Electron-Rich Alkenes309
2.2.2.7.1 Reactions of Enecarbamates and Enamides309
2.2.2.7.1.1 Friedel--Crafts Reaction309
2.2.2.7.1.2 Aza-Ene-Type Reaction311
2.2.2.7.2 Reactions of Vinyl Ethers and Analogues312
2.2.2.7.2.1 Aldol-Type Reaction312
2.2.2.7.2.2 Semipinacol Rearrangement314
2.2.2.7.2.3 Protonation of Silyl Enol Ethers316
2.2.2.7.2.4 Addition Reaction to Vinyl-1H-indoles317
2.2.2.7.3 Reactions of Nonactivated Alkenes and Analogues319
2.2.2.7.3.1 Hydroamination of Alkenes319
2.2.2.7.3.2 Hydroamination of Dienes and Allenes319
2.2.3 Brønsted Acid Catalysts Other than Phosphoric Acids326
2.2.3.1 Carboxylic Acids326
2.2.3.1.1 Imines as Electrophiles326
2.2.3.1.1.1 Nucleophilic Additions of Diazo Compounds326
2.2.3.1.1.2 Nucleophilic Additions of Aza-enamines (N,N-Dialkylhydrazones)329
2.2.3.1.1.3 Alkynylation of Imines331
2.2.3.1.1.4 Friedel--Crafts Reactions332
2.2.3.1.2 O-Nitroso Aldol Reactions333
2.2.3.2 Amides and Sulfonamides333
2.2.3.2.1 Hetero-Diels--Alder Reactions333
2.2.3.2.2 Double Michael Addition/Aromatization335
2.2.3.3 1,1'-Bi-2-naphthol and Its Derivatives336
2.2.3.3.1 Allyl-, Alkenyl-, Alkynyl-, and Arylborations336
2.2.3.3.1.1 Allylboration of Ketones336
2.2.3.3.1.2 Alkenyl- and Alkynylboration of Enones337
2.2.3.3.1.3 Allyl-, Alkenyl-, Alkynyl-, and Arylboration of Imines338
2.2.3.3.2 Enamine Mannich Reactions341
2.2.3.4 Disulfonimides and Aryldisulfonylmethanes341
2.2.3.4.1 Mukaiyama Aldol Reactions341
2.2.3.4.2 Mannich-Type Reactions342
2.2.4 Hydrogen-Bonding Catalysts: (Thio)urea Catalysis344
2.2.4.1 On the Way to Thiourea Organocatalysts344
2.2.4.2 Thiourea Derivatives as Organocatalysts in Organic Synthesis346
2.2.4.2.1 Nonstereoselective Transformations with Achiral Thiourea Derivatives346
2.2.4.2.2 Stereoselective Transformations with Chiral Thiourea Derivatives347
2.2.4.3 Michael Addition348
2.2.4.3.1 Michael Addition of 1,3-Dioxolan-4-ones to 1-Nitro-2-phenylethenes348
2.2.4.3.2 Michael Addition of Aldehydes to Nitroalkenes349
2.2.4.3.3 Michael Addition of a-Cyano Ketones to a,ß-Unsaturated Trifluoromethyl Ketones350
2.2.4.3.4 Michael Addition of Diethyl Malonate to (E)-Chalcones352
2.2.4.3.5 Michael Addition of Malononitriles to a,ß-Unsaturated 1-Acylpyrrolidinones353
2.2.4.3.6 Michael Addition of Nitroalkanes to Nitroalkenes354
2.2.4.3.7 Michael Addition of Oximes to Aliphatic Nitroalkenes355
2.2.4.3.8 Michael Addition of 3-Substituted Oxindoles to Nitroalkenes356
2.2.4.3.9 Michael Addition of Oxindoles to Maleimides358
2.2.4.3.10 Phospha-Michael Addition of Diarylphosphine Oxides to a,ß-Unsaturated Ketones359
2.2.4.3.11 Sulfa-Michael Addition of Alkanethiols to a,ß-Unsaturated N-Acylated Oxazolidin-2-ones360
2.2.4.3.12 Michael Addition of Cyclohexanone to Nitroalkenes362
2.2.4.3.13 Intramolecular Michael Addition of Nitronates to Conjugated Esters363
2.2.4.3.14 Michael Addition of a,a-Disubstituted Aldehydes to Nitroalkenes364
2.2.4.3.15 Michael Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes365
2.2.4.3.16 Nitrocyclopropanation of a,ß-Unsaturated a-Cyanoimides with Bromonitromethane367
2.2.4.3.17 Michael Addition: Substrate Scope368
2.2.4.4 Mannich Reaction369
2.2.4.4.1 Mannich Reaction of Phosphorus Ylides with Imines369
2.2.4.4.2 Mannich Reaction of Malonates with Imines369
2.2.4.4.3 Mannich Reaction of Fluorinated ß-Keto Esters with Imines370
2.2.4.4.4 Mannich Reactions of a-Amido Sulfones or Sulfonylimines371
2.2.4.4.5 Mannich Reaction of Lactones with Imines374
2.2.4.4.6 Mannich Reaction of Oxindoles with Imines375
2.2.4.4.7 Mannich Reaction of Ketones with Hydrazones376
2.2.4.4.8 Mannich Reaction of Ketene Silyl Acetals with Imines377
2.2.4.4.9 Vinylogous Mannich Reaction378
2.2.4.4.10 Nitro-Mannich Reaction/Aza-Henry Reaction379
2.2.4.4.10.1 Nitro-Mannich/Aza-Henry Reaction of Nitroalkanes with Imines379
2.2.4.4.10.2 Nitro-Mannich/Aza-Henry Reaction of Nitroalkanes with a-Amido Sulfones381
2.2.4.4.10.3 Nitro-Mannich/Aza-Henry Reaction of Nitroacetates with Imines382
2.2.4.4.11 Acyl-Mannich Reaction383
2.2.4.4.12 anti-Mannich Reaction385
2.2.4.5 Henry Reaction/Nitroaldol Reaction386
2.2.4.6 Aldol Reaction387
2.2.4.6.1 Aldol Reaction of a-Isothiocyanato Imides with Aldehydes387
2.2.4.6.2 Aldol Reaction of a-Isothiocyanato Imides with a-Keto Esters388
2.2.4.6.3 Aldol Reaction of Aromatic Aldehydes with Cyclohexanone389
2.2.4.6.4 Vinylogous Aldol Reaction390
2.2.4.6.5 Vinylogous Mukaiyama Aldol Reaction391
2.2.4.7 Morita--Baylis--Hillman Reaction393
2.2.4.7.1 Morita--Baylis--Hillman Reaction of Cyclohex-2-enone with Aldehydes393
2.2.4.7.2 Morita--Baylis--Hillman Reaction of Methyl Vinyl Ketone with Aldehydes396
2.2.4.7.3 Aza-Morita--Baylis--Hillman Reaction of Imines with Acrylates or Methyl Vinyl Ketone397
2.2.4.7.4 Aza-Morita--Baylis--Hillman-Type Reactions of N-Tosylimines with Nitroalkenes399
2.2.4.8 Strecker Reaction400
2.2.4.8.1 Strecker Reaction: Catalytic Addition of Hydrogen Cyanide or Trimethylsilyl Cyanide to Aldimines400
2.2.4.8.2 Strecker Reaction: Catalytic Addition of Hydrogen Cyanide or Trimethylsilyl Cyanide to Ketimines405
2.2.4.8.3 Strecker Reaction: Acylcyanation of Imines406
2.2.4.8.4 Acyl-Strecker Reaction in One Pot407
2.2.4.9 Cyanosilylation409
2.2.4.10 Hydrophosphonylation410
2.2.4.10.1 Hydrophosphonylation of Imines410
2.2.4.10.2 Hydrophosphonylation of a-Keto Esters412
2.2.4.11 Friedel--Crafts Reaction413
2.2.4.11.1 Friedel--Crafts Reaction of Indoles with Imines413
2.2.4.11.2 Friedel--Crafts Reaction of Naphthols with Nitroalkenes414
2.2.4.11.3 Friedel--Crafts Reaction of Naphthols with ß,.-Unsaturated a-Keto Esters416
2.2.4.11.4 Friedel--Crafts Reactions of Sesamol with Nitrostyrenes417
2.2.4.11.5 Friedel--Crafts Reaction of Indoles with Acylphosphonates418
2.2.4.12 Desymmetrizations420
2.2.4.12.1 meso-Anhydride Desymmetrization420
2.2.4.12.2 Ring Opening of Aziridines423
2.2.4.13 Kinetic Resolutions424
2.2.4.13.1 Kinetic Resolution of Propargylic Amines424
2.2.4.14 Cycloadditions426
2.2.4.14.1 Diels--Alder Reaction426
2.2.4.14.2 [3 + 2] Cycloaddition428
2.2.4.14.3 1,3-Dipolar Cycloaddition429
2.2.4.15 Pictet--Spengler Reaction430
2.2.4.15.1 Cyclization of Hydroxy Lactams430
2.2.4.15.2 Cyclization of Pyrroles onto N-Acyliminium Ions432
2.2.4.15.3 Acyl-Pictet--Spengler Reaction433
2.2.4.15.4 Protio-Pictet--Spengler Reaction435
2.2.4.16 Biginelli Reaction436
2.2.4.16.1 Biginelli Reaction of (Thio)ureas with Benzaldehydes and Ethyl Acetoacetate436
2.2.4.17 Petasis Reaction438
2.2.4.17.1 Petasis-Type 2-Vinylation of Quinolines438
2.2.4.18 Transfer Hydrogenation440
2.2.4.18.1 Transfer Hydrogenation of Nitroalkenes440
2.2.4.18.2 Transfer Hydrogenation of ß-Nitroacrylates441
2.2.4.19 Reduction of Ketones442
2.2.4.20 a-Amination443
2.2.4.20.1 a-Amination of a-Cyano Ketones443
2.2.4.20.2 a-Amination of Aldehydes445
2.2.4.21 a-Alkylation of Aldehydes447
2.2.4.22 a-Chlorination of Aldehydes449
2.2.4.23 Cationic Polycyclization450
2.2.4.23.1 Cationic Polycyclizations of Lactam Derivatives450
2.2.4.24 Addition to Oxocarbenium Ions452
2.2.4.24.1 Addition to Oxocarbenium Ions: Synthesis of 3,4-Dihydro-1H-2-benzopyran Derivatives452
2.2.5 Hydrogen-Bonding Catalysts Other than Ureas and Thioureas460
2.2.5.1 Nonionic Hydrogen-Bonding Catalysts460
2.2.5.1.1 Diols460
2.2.5.1.1.1 Hetero-Diels--Alder Reactions460
2.2.5.1.1.2 Diels--Alder Reactions462
2.2.5.1.1.3 Mukaiyama Aldol Reactions463
2.2.5.2 Ionic Hydrogen-Bonding Catalysts466
2.2.5.2.1 Guanidinium and Amidinium Salts466
2.2.5.2.1.1 Diels--Alder Reactions466
2.2.5.2.1.2 Aza-Henry Reactions467
2.2.5.2.1.3 Phospha-Mannich Reactions469
2.2.5.2.1.4 Michael Additions470
2.2.5.2.1.5 Claisen Rearrangements471
2.2.5.2.2 Aminophosphonium Salts473
2.2.5.2.2.1 Henry Reactions473
2.2.5.2.2.2 Hydrophosphonylation Reactions474
2.2.5.2.2.3 Mannich-Type Reactions475
2.2.5.2.2.4 Michael Additions476
2.2.5.2.2.5 Hetero-Michael Additions477
2.2.5.2.2.6 Protonation Reactions478
2.2.5.2.3 Pyridinium and Quinolinium Salts479
2.2.5.2.3.1 Mannich-Type Reactions479
2.2.5.2.3.2 Michael Additions480
2.2.6 Bifunctional (Thio)urea and BINOL Catalysts484
2.2.6.1 Bifunctional Amino (Thio)ureas484
2.2.6.1.1 Michael Addition with Nitroalkenes and Alkenyl Sulfones484
2.2.6.1.1.1 Addition of Active Methylene Compounds484
2.2.6.1.1.2 Addition of Ketones and Aldehydes492
2.2.6.1.1.3 Addition of Heteroatomic Compounds496
2.2.6.1.2 Michael Addition to a,ß-Unsaturated Ketones and Carboxylic Acid Derivatives498
2.2.6.1.2.1 Addition of Active Methylene Compounds to a,ß-Unsaturated Ketones498
2.2.6.1.2.2 Addition of Carbon and Heteroatom Nucleophiles to a,ß-Unsaturated Imides and Esters499
2.2.6.1.3 1,2-Nucleophilic Additions with Aldehydes and Ketones504
2.2.6.1.3.1 Addition of Carbon Nucleophiles to Aldehydes504
2.2.6.1.3.2 Addition of Trimethylsilyl Cyanide and Hydride to Ketones508
2.2.6.1.3.3 Addition of Alcohols to Lactones511
2.2.6.1.4 1,2-Nucleophilic Additions with Imines512
2.2.6.1.4.1 Addition of Active Methylene Compounds512
2.2.6.1.4.2 Addition of Ketones515
2.2.6.1.4.3 Addition of 1,1-Dicyanoalkenes516
2.2.6.1.5 Amination Reaction with Azodicarboxylates518
2.2.6.1.5.1 Addition of ß-Oxo Esters518
2.2.6.1.6 Other Amino Thiourea Catalyzed Reactions519
2.2.6.1.6.1 Asymmetric Nazarov Cyclization519
2.2.6.1.6.2 Asymmetric a-Alkylation of Aldehydes520
2.2.6.1.6.3 Asymmetric Iodolactonization of Alkenoic Acids522
2.2.6.2 Bifunctional Hydroxy (Thio)ureas524
2.2.6.2.1 Michael Addition with Electron-Deficient Alkenes524
2.2.6.2.1.1 Friedel--Crafts-Type Alkylation of Indoles with Nitroalkenes524
2.2.6.2.1.2 Michael Addition of Formaldehyde N,N-Dialkylhydrazones to ß,.-Unsaturated a-Oxo Esters526
2.2.6.2.1.3 Michael Addition of Alkenylboronic Acids to .-Hydroxy Enones527
2.2.6.2.2 1,2-Nucleophilic Addition with Imines and Quinolines529
2.2.6.2.2.1 Aza-Henry Reaction529
2.2.6.2.2.2 Petasis-Type Reaction of Quinolines with Alkenylboronic Acids530
2.2.6.3 Other Bifunctional (Thio)ureas532
2.2.6.3.1 Sulfinamide Ureas532
2.2.6.3.1.1 Allylation of Acylhydrazones532
2.2.6.3.2 Phosphino Thioureas534
2.2.6.3.2.1 [3 + 2] Cycloaddition of an Imine and an Allene534
2.2.6.3.2.2 Aza-Morita--Baylis--Hillman Reaction with Imines536
2.2.6.3.2.3 Ring Opening of Aziridines538
2.2.6.4 Bifunctional BINOLs540
2.2.6.4.1 BINOL-Pyridine Catalysts540
2.2.6.4.1.1 Aza-Morita--Baylis--Hillman Reaction with Imines540
2.3 Additional Topics546
2.3.1 Phase-Transfer Catalysis: Natural-Product-Derived PTC546
2.3.1.1 Cinchona-Derived Phase-Transfer Catalysts548
2.3.1.1.1 Alkylation Reactions548
2.3.1.1.1.1 a-Alkylation of a Glycine Schiff Base548
2.3.1.1.1.2 a,a-Dialkylation of a Glycine Schiff Base567
2.3.1.1.1.3 a-Alkylation of 4,5-Dihydrooxazole- and 4,5-Dihydrothiazole-4-carboxylates570
2.3.1.1.1.4 a-Alkylation of a-Alkoxycarbonyl Compounds572
2.3.1.1.1.5 a-Alkylation of ß-Oxo Esters573
2.3.1.1.2 Michael Additions576
2.3.1.1.3 Aldol Reactions580
2.3.1.1.4 Mannich Reaction582
2.3.1.1.5 Epoxidation Reactions583
2.3.1.1.5.1 Epoxidation with Hydrogen Peroxide584
2.3.1.1.5.2 Epoxidation with Potassium Hypochlorite585
2.3.1.1.6 Asymmetric Darzens Reactions586
2.3.1.1.7 Aziridination Reactions588
2.3.1.1.8 Hydroxylation Reactions589
2.3.1.1.8.1 a-Hydroxylation589
2.3.1.1.8.2 a-Dihydroxylation589
2.3.1.1.9 a-Fluorination Reactions590
2.3.1.2 Tartrate-Derived Phase-Transfer Catalysts591
2.3.2 Phase-Transfer Catalysis: Non-Natural-Product-Derived PTC598
2.3.2.1 Asymmetric Alkylation598
2.3.2.1.1 Asymmetric Benzylation of a Glycine Derivative for the Synthesis of a Phenylalanine Derivative598
2.3.2.1.1.1 Asymmetric Alkylation of Glycine Derivatives for the Synthesis of a-Alkyl-a-amino Acids602
2.3.2.1.1.2 Asymmetric Alkylation of a Glycine Derivative Using Recyclable Catalysts602
2.3.2.1.1.3 Synthesis of Biologically Active Compounds via the Asymmetric Alkylation of a Glycine Derivative604
2.3.2.1.2 Asymmetric Double Alkylation of a Glycine Derivative for the Synthesis of a,a-Dialkyl-a-amino Acids605
2.3.2.1.2.1 Asymmetric Alkylation of a-Alkyl-a-amino Acid Derivatives for the Synthesis of a,a-Dialkyl-a-amino Acids605
2.3.2.1.2.2 Asymmetric Alkylation of an Azlactone for the Synthesis of an a,a-Dialkyl-a-amino Acid606
2.3.2.1.2.3 Asymmetric Synthesis of a-Alkylated Serines607
2.3.2.1.2.4 Asymmetric Synthesis of a-Alkylated Cysteines607
2.3.2.1.2.5 Asymmetric Synthesis of Cyclic a-Alkyl Amino Acids608
2.3.2.1.3 N-Terminal Alkylation of Dipeptides608
2.3.2.1.3.1 N-Terminal Alkylation of Tri- and Tetrapeptides610
2.3.2.1.3.2 Alkylation of the Peptide Backbone of a C-Terminal Azlactone610
2.3.2.1.4 Asymmetric Alkylation of a Glycine Amide Schiff Base611
2.3.2.1.4.1 Diastereo- and Enantioselective Alkylation of a Glycine Amide Schiff Base through Kinetic Resolution of ß-Branched Racemic Alkyl Halides612
2.3.2.1.4.2 Asymmetric Alkylation of a Protected Glycine Weinreb Amide612
2.3.2.1.5 Asymmetric Alkylation of ß-Keto Esters614
2.3.2.1.5.1 Asymmetric Alkylation of a 3-Oxoproline Derivative614
2.3.2.1.5.2 Asymmetric Alkylation of a-(Benzoyloxy)-ß-keto Esters615
2.3.2.1.5.3 Asymmetric Alkylation of a ß-Amino-ß-oxo Ester616
2.3.2.1.6 Asymmetric Alkylation of a-Cyanocarboxylates616
2.3.2.1.7 Asymmetric Alkylation of a-Alkynyl Esters617
2.3.2.1.7.1 Alkene Isomerization/a-Alkylation of an a-Alkynylcrotonate as a Route to a 1,4-Enyne618
2.3.2.1.7.2 Asymmetric Alkylation of 5-[(Triphenylsilyl)ethynyl]-1,3-dioxolan-4-one618
2.3.2.1.8 Asymmetric Alkylation of Diaryloxazolidine-2,4-diones619
2.3.2.2 Asymmetric Michael Additions621
2.3.2.2.1 Asymmetric Michael Addition of Glycine Derivatives621
2.3.2.2.1.1 Asymmetric Michael Addition of an Alanine Derivative622
2.3.2.2.1.2 Asymmetric Michael Addition of tert-Butyl 2-(1-Naphthyl)-4,5-dihydrooxazole-4-carboxylate to Ethyl Acrylate623
2.3.2.2.1.3 Asymmetric Synthesis of (+)-Monomorine623
2.3.2.2.2 Asymmetric Michael Addition of ß-Keto Esters624
2.3.2.2.2.1 Asymmetric Michael Addition of ß-Keto Esters to Acetylenic Ketones625
2.3.2.2.3 Asymmetric Michael Addition of Diethyl Malonate to Chalcone Derivatives626
2.3.2.2.4 Asymmetric Michael Addition of Nitroalkanes to Alkylidenemalonates627
2.3.2.2.4.1 Asymmetric Michael Addition of Nitroalkanes to Cyclic a,ß-Unsaturated Ketones628
2.3.2.2.4.2 Asymmetric Michael Addition of 2-Nitropropane to Chalcone628
2.3.2.2.5 Asymmetric Michael Addition of Cyanoacetates to Acetylenic Esters629
2.3.2.2.5.1 Asymmetric Michael Addition of Cyanoacetates to Acetylenic Ketones630
2.3.2.2.6 Asymmetric Michael Addition of 3-Aryloxindoles to Methyl Vinyl Ketone631
2.3.2.2.6.1 Asymmetric Michael Addition of 3-Aryloxindoles to Nitroalkenes632
2.3.2.3 Asymmetric Aldol Reactions633
2.3.2.3.1 Asymmetric Aldol Reaction of a Glycine Derivative633
2.3.2.4 Asymmetric Mannich Reactions634
2.3.2.4.1 Asymmetric Mannich Reaction of a Glycine Derivative634
2.3.2.4.2 Asymmetric Mannich Reaction of a 3-Phenyloxindole635
2.3.2.5 Asymmetric Strecker Reactions635
2.3.2.5.1 Asymmetric Strecker Reaction of Aldimines635
2.3.2.5.1.1 Asymmetric Strecker Reaction of N-Arylsulfonylated Imines Generated In Situ636
2.3.2.6 Asymmetric Amination637
2.3.2.6.1 Asymmetric Amination of ß-Keto Esters637
2.3.2.7 Asymmetric Fluorination639
2.3.2.7.1 Asymmetric Fluorination of ß-Keto Esters639
2.3.2.8 Asymmetric Epoxidation641
2.3.2.8.1 Asymmetric Epoxidation of a,ß-Unsaturated Ketones641
2.3.2.9 Asymmetric Neber Rearrangement642
2.3.2.9.1 Asymmetric Neber Rearrangement of Ketoxime Sulfonates642
2.3.2.10 Asymmetric Darzens Reactions643
2.3.2.10.1 Asymmetric Darzens Reaction of Haloamides643
2.3.3 Computational and Theoretical Studies648
2.3.3.1 Methodology and Computational Approaches648
2.3.3.2 Enamine Catalysis649
2.3.3.2.1 Intramolecular Aldol Reactions649
2.3.3.2.2 Intermolecular Aldol Reactions651
2.3.3.2.3 Mannich Reactions655
2.3.3.2.4 Michael Additions656
2.3.3.2.5 a-Functionalization of Carbonyl Compounds658
2.3.3.2.6 .-Functionalization of a,ß-Unsaturated Aldehydes659
2.3.3.2.7 Organo-SOMO Catalysis659
2.3.3.3 Iminium Catalysis660
2.3.3.3.1 Imidazolidinone-Catalyzed Reactions660
2.3.3.3.2 Iminium Catalysis by Diarylprolinol Silyl Ethers661
2.3.3.4 Catalysis via Other Types of Lewis Base Activation662
2.3.3.4.1 Acyl-Transfer Reactions662
2.3.3.4.2 Carbene-Catalyzed Reactions663
2.3.3.4.3 Morita--Baylis--Hillman Reactions664
2.3.3.5 Hydrogen-Bond Catalysis665
2.3.3.5.1 Thioureas as Hydrogen-Bond Donors665
2.3.3.5.2 TADDOL-Catalyzed Diels--Alder Reactions666
2.3.3.5.3 Cationic Hydrogen-Bond Donor Catalysts667
2.3.3.6 Organocatalysis by Brønsted Bases668
2.3.3.6.1 Bifunctional Catalysis by Chiral Amines668
2.3.3.6.2 Guanidines as Bifunctional Organocatalysts671
2.3.3.7 Organocatalysis by Chiral Brønsted Acids672
2.3.3.7.1 Asymmetric Addition to Imines672
2.3.3.7.2 Asymmetric Imine Reduction675
2.3.3.7.3 Asymmetric Addition to Carbonyls675
2.3.4 Mechanism in Organocatalysis680
2.3.4.1 Experimental Methods for Mechanistic Studies in Organocatalysis680
2.3.4.1.1 Substrate and Product Studies681
2.3.4.1.2 Catalyst Studies682
2.3.4.1.2.1 Structure--Performance Relationships682
2.3.4.1.3 Catalytic Intermediate Studies684
2.3.4.1.3.1 By NMR Spectroscopy684
2.3.4.1.3.2 By Mass Spectrometry686
2.3.4.1.3.3 By X-ray Crystallography687
2.3.4.1.4 Kinetic Studies688
2.3.4.1.4.1 Obtaining Kinetic Data688
2.3.4.1.4.2 Standard Evaluation of Kinetic Data689
2.3.4.1.4.3 Reaction Progress Kinetic Analysis690
2.3.4.1.4.4 Kinetic Isotope Effects692
2.3.4.1.4.5 Hammett Studies693
2.3.4.1.5 Other Methods694
2.3.4.1.5.1 Nonlinear Effects in Asymmetric Catalysis694
2.3.4.1.5.2 Solvent and Water Effects696
2.3.4.1.5.3 Stereochemical Considerations696
2.3.4.2 Selected Case Studies696
2.3.4.2.1 Enamine Catalysis696
2.3.4.2.1.1 Substrate and Product Studies697
2.3.4.2.1.2 Catalyst Studies698
2.3.4.2.1.3 Enamine Formation701
2.3.4.2.1.4 Enamine Structure703
2.3.4.2.1.5 Reaction with the Electrophile704
2.3.4.2.1.6 Kinetic Studies706
2.3.4.2.1.7 Nonlinear Effects707
2.3.4.2.2 Iminium Catalysis707
2.3.4.2.2.1 Catalyst Studies708
2.3.4.2.2.2 Iminium Formation and Structure710
2.3.4.2.2.3 Reaction with the Nucleophile711
2.3.4.2.2.4 Nonlinear Effects714
2.3.4.2.2.5 Water and Solvent Effects714
2.3.5 Supported Organocatalysts720
2.3.5.1 Polymer-Supported Cinchona Alkaloid Amine Catalysts720
2.3.5.2 Polymer-Supported Proline-Derived Organocatalysts724
2.3.5.2.1 Cross-Linked Methacrylic Polymer Beads Containing Proline725
2.3.5.3 Supported Prolinamide Catalysts726
2.3.5.4 Polymer-Supported Chiral Pyrrolidine Catalysts729
2.3.5.5 Polymer-Supported Peptides and Poly(amino acids)729
2.3.5.6 Supported Chiral Quaternary Ammonium Salts730
2.3.5.6.1 Benzylation of N-(Diphenylmethylene)glycine tert-Butyl Ester Using Polymer-Supported Cinchona Alkaloid Quaternary Ammonium Salts731
2.3.5.6.2 Benzylation of N-(Diphenylmethylene)glycine tert-Butyl Ester Using Main Chain Chiral Cinchona Alkaloid Quaternary Ammonium Salt Polymers733
2.3.5.6.3 Epoxidation of Chalcones Using Polymer-Supported Cinchona Alkaloid Quaternary Ammonium Salts736
2.3.5.7 Supported MacMillan Catalysts737
2.3.5.8 Supported Chiral Phosphoramides739
2.3.5.9 Polymer-Supported Chiral Acidic Organocatalysts739
2.3.6 Organocatalysis Combined with Metal Catalysis or Biocatalysis744
2.3.6.1 Combination of Phase-Transfer Catalysts with Transition-Metal Complexes745
2.3.6.2 Combination of Amine Catalysis with Transition-Metal Catalysis746
2.3.6.2.1 Enamines with p-Allylpalladium Electrophiles747
2.3.6.2.2 Enamine Catalysis with p-Acid Catalysis750
2.3.6.2.3 Enamine Catalysis with Photoredox Catalysis754
2.3.6.2.4 Enamine Catalysis with Rhodium-Catalyzed Hydroformylation757
2.3.6.2.5 Cinchona Alkaloid Derived Catalysts with p-Acids758
2.3.6.3 Combination of Brønsted Acids with Transition-Metal Complexes760
2.3.6.3.1 Cooperative Catalysis of Brønsted Acids with Transition-Metal Complexes760
2.3.6.3.2 Relay Catalysis of Brønsted Acids with Transition-Metal Complexes768
2.3.6.4 Combination of Nucleophilic Catalysts with Lewis Acids777
2.3.6.4.1 Cinchona Alkaloid Derivatives with Lewis Acids777
2.3.6.4.2 N-Heterocyclic Carbenes with Lewis Acids781
2.3.6.5 Combination of Organocatalysis with Enzyme Catalysis783
2.3.7 Peptide Catalysis788
2.3.7.1 Peptide-Catalyzed Oxidation Reactions788
2.3.7.1.1 Epoxidation Reactions788
2.3.7.1.1.1 Juliá--Colonna Epoxidation788
2.3.7.1.1.2 Other Epoxidations796
2.3.7.1.2 a-Aminoxylation of Aldehydes799
2.3.7.1.3 Oxidation of Indoles800
2.3.7.2 Peptide-Catalyzed Acylation, Phosphorylation, and Sulfonylation801
2.3.7.2.1 Kinetic Resolution of Alcohols by Acylation801
2.3.7.2.1.1 Kinetic Resolution of Secondary Alcohols801
2.3.7.2.1.2 Kinetic Resolution of Tertiary Alcohols804
2.3.7.2.2 Kinetic Resolution of Thioformamides805
2.3.7.2.3 Desymmetrization of Prochiral Substrates807
2.3.7.2.3.1 Remote Desymmetrization of Prochiral Diols by Acylation and Site-Selective Catalysis807
2.3.7.2.3.2 Desymmetrization of myo-Inositol Derivatives by Phosphorylation808
2.3.7.2.3.3 Desymmetrization of meso-Diols by Sulfonylation809
2.3.7.2.4 Multicatalyst Systems for Acylation Followed by Oxidation811
2.3.7.3 Peptide-Catalyzed C--C Bond-Forming Reactions812
2.3.7.3.1 Hydrocyanation of Aldehydes812
2.3.7.3.2 Aldol Reactions814
2.3.7.3.2.1 Acetone and Cyclic Ketones as Aldol Donors814
2.3.7.3.2.2 Hydroxyacetone as the Aldol Donor817
2.3.7.3.3 Conjugate Addition Reactions818
2.3.7.3.3.1 Conjugate Addition Reactions with Iminium Activation818
2.3.7.3.3.2 Conjugate Addition Reactions with Enamine Activation819
2.3.7.3.4 Morita--Baylis--Hillman Reactions823
2.3.7.3.5 Reactions of Acyl Anion Equivalents824
2.3.7.3.6 Enantioselective Protonation of Lithium Enolates826
2.3.7.3.7 Atroposelective Bromination of Biaryl Compounds828
2.3.8 Organocatalytic Cascade Reactions834
2.3.8.1 Secondary Amine Catalyzed Cascade Reactions834
2.3.8.1.1 Enamine Activation834
2.3.8.1.1.1 Asymmetric Synthesis of Tetrahydro-1,2-oxazine-6-carbaldehydes by a Domino Aminoxylation/Aza-Michael Reaction834
2.3.8.1.2 Iminium Activation836
2.3.8.1.2.1 Asymmetric Synthesis of Pyrroloindolines and Furanoindolines by a Domino Michael/Cyclization Reaction836
2.3.8.1.2.2 Asymmetric Synthesis of 6-Carboxycyclohex-2-en-1-ones by Domino Michael/Wittig or Michael/Knoevenagel Reactions839
2.3.8.1.3 Activation of Singly Occupied Molecular Orbitals842
2.3.8.1.3.1 Asymmetric Synthesis of Steroidal Frameworks842
2.3.8.1.3.2 Asymmetric Synthesis of Cyclohexanecarbaldehydes by a Domino Alkene Addition/Friedel--Crafts Reaction846
2.3.8.1.4 Iminium--Enamine Activation848
2.3.8.1.4.1 Asymmetric Synthesis of Cyclopent-1-enecarbaldehydes by a Domino Michael/Aldol Reaction848
2.3.8.1.4.2 Asymmetric Synthesis of Cyclopentanecarbaldehydes by Domino Double Michael Reaction849
2.3.8.1.4.3 Asymmetric Synthesis of 2,3-Dihydro-1H-indene-2-carbaldehydes by a Reductive Michael Reaction851
2.3.8.1.4.4 Asymmetric Synthesis of 2H-1-Benzopyran-3-carbaldehydes by Domino Michael/Aldol Reaction853
2.3.8.1.4.5 Asymmetric Synthesis of 2H-1-Benzothiopyran-3-carbaldehydes by a Domino Michael/Aldol Reaction854
2.3.8.1.4.6 Asymmetric Synthesis of 1,2-Dihydroquinoline-3-carbaldehydes by a Domino Michael/Aldol Reaction856
2.3.8.1.5 Iminium--Allenamine Activation857
2.3.8.1.5.1 Asymmetric Synthesis of 4H-1-Benzopyran-3-carbaldehydes by a Domino Double Michael Reaction857
2.3.8.1.6 Enamine--Iminium--Enamine Activation859
2.3.8.1.6.1 Asymmetric Synthesis of Tetrasubstituted Cyclohexenecarbaldehydes by a Domino Michael/Michael/Aldol Reaction859
2.3.8.1.6.2 Asymmetric Synthesis of Six-Membered Spirocyclic Oxindoles by a Domino Michael/Michael/Aldol Reaction860
2.3.8.1.7 Iminium--Enamine--Iminium--Enamine Activation863
2.3.8.1.7.1 Asymmetric Synthesis of Tetrahydro-6H-dibenzo[b,d]pyrans by a Domino Oxa-Michael/Michael/Michael/Aldol Reaction863
2.3.8.1.7.2 Asymmetric Synthesis of Polycyclic Spirooxindole Frameworks by a Domino Michael/Michael/Michael/Aldol Reaction864
2.3.8.2 Primary Amine Catalyzed Cascade Reactions866
2.3.8.2.1 Enamine--Iminium Activation: Asymmetric Synthesis of Spirocyclic Oxindolic Cyclohexanones by a Domino Double Michael Reaction867
2.3.8.2.2 Iminium--Enamine Activation: Asymmetric Synthesis of Octahydronaphthalen-2(1H)-ones by a Domino Double Michael Reaction870
2.3.8.3 Tertiary Amine Catalyzed Cascade Reactions871
2.3.8.3.1 Cascade Reactions Catalyzed by Cinchona Alkaloids by Covalent Catalysis: Asymmetric Synthesis of Bicyclo[4.1.0]alkane Frameworks by a Nitrogen Ylide Catalyzed Intramolecular Cyclopropanation872
2.3.8.3.2 Cascade Reactions Catalyzed by Cinchona Alkaloids by Noncovalent Catalysis: Asymmetric Synthesis of Dihydropyrroles874
2.3.8.4 Brønsted Acid Catalyzed Cascade Reactions876
2.3.8.4.1 Phosphoric Acid Catalyzed Cascade Reactions876
2.3.8.4.1.1 Asymmetric Synthesis of 9-(Indol-3-yl)fluorene Derivatives by a Domino Double Friedel--Crafts Reaction876
2.3.8.4.1.2 Asymmetric Synthesis of Tetrahydro-ß-carboline Derivatives880
2.3.8.4.1.3 Asymmetric Synthesis of 3-Substituted Cyclohexylamines882
2.3.8.4.2 Thiourea-Catalyzed Cascade Reactions: Asymmetric Synthesis of Substituted Benzothiopyran-4-ols by a Domino Michael/Aldol Reaction885
2.3.8.5 N-Heterocyclic Carbene Catalyzed Cascade Reactions886
2.3.8.5.1 Homoenolate Activation: Asymmetric Synthesis of Bicyclic ß-Lactams by a Domino Benzoin/Oxy-Cope/Mannich Reaction886
2.3.9 Industrial Applications894
2.3.9.1 Historical Background894
2.3.9.2 Kinetic Resolution and Desymmetrization895
2.3.9.2.1 Kinetic Resolution of Urethane-Protected a-Amino Acid N-Carboxyanhydrides895
2.3.9.2.2 Asymmetric Synthesis of a Methyl (S)-4-(4-Fluorophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate by Desymmetrization897
2.3.9.3 Asymmetric Phase-Transfer-Catalyzed Alkylations899
2.3.9.3.1 Synthesis of an Enantioenriched a-Amino Acid by Phase-Transfer-Catalyzed Alkylation with a Cinchona Alkaloid899
2.3.9.3.2 Novel Asymmetric Phase-Transfer Catalysts for Practical Synthesis of Unnatural Amino Acids902
2.3.9.4 Asymmetric Aldol Reactions, Mannich Reactions, and Michael Additions906
2.3.9.4.1 Practical Asymmetric Synthesis of a Key Building Block for an HIV Protease Inhibitor by the Proline-Catalyzed Direct Cross-Aldol Reaction906
2.3.9.4.2 Asymmetric Synthesis of a Key Building Block for Maraviroc by a Proline-Catalyzed Mannich Reaction of Acetaldehyde908
2.3.9.4.3 Asymmetric Synthesis of a Pharmaceutical Intermediate by Michael Addition of a Dialkyl Malonate909
2.3.9.4.4 Efficient Synthesis of ( )-Oseltamivir by an Organocatalyzed Michael Reaction of an Aldehyde and a Nitroalkene911
2.3.9.5 Organocatalyzed Asymmetric Epoxidations913
2.3.9.5.1 Practical Procedure for the Large-Scale Preparation of Methyl (2R,3S)-3-(4-Methoxyphenyl)oxirane-2-carboxylate, a Key Intermediate for Diltiazem913
2.3.9.5.2 Approach to a Chiral Lactone: Application of the Shi Epoxidation914
2.3.9.6 Diastereoselective and Enantioselective Aza-Henry Reaction915
2.3.9.7 Enantioselective Organocatalytic Amine Conjugate Addition916
2.3.9.8 Enantioselective Friedel--Crafts Reaction919
2.3.9.9 Asymmetric Hydrocyanation and Strecker Reactions920
2.3.9.10 Future Prospects921
2.4 Future Perspectives924
2.4.1 Future Perspectives for Lewis Base and Acid Catalysts924
2.4.2 Future Perspectives for Brønsted Base and Acid Catalysts, and Additional Topics925
Keyword Index928
Author Index990
Abbreviations1016
List of All Volumes1022

Weitere E-Books zum Thema: Chemie - Biochemie

Heißkanal-Technik

E-Book Heißkanal-Technik
Format: PDF

Der Heißkanal ist das für Qualität und Wirtschaftlichkeit entscheidende Werkzeugteil beim Spritzgießen. Die verschiedenen technischen Varianten und Konstruktionsprinzipien…

Heißkanal-Technik

E-Book Heißkanal-Technik
Format: PDF

Der Heißkanal ist das für Qualität und Wirtschaftlichkeit entscheidende Werkzeugteil beim Spritzgießen. Die verschiedenen technischen Varianten und Konstruktionsprinzipien…

Bauchemie

E-Book Bauchemie
Format: PDF

Mehr denn je ist der Entscheidungsträger in Wirtschaft und Behörde, ob als Ingenieur, Architekt oder Praktiker gefordert, breitgefächerte technische und ökologische Fragen zu…

Bauchemie

E-Book Bauchemie
Format: PDF

Mehr denn je ist der Entscheidungsträger in Wirtschaft und Behörde, ob als Ingenieur, Architekt oder Praktiker gefordert, breitgefächerte technische und ökologische Fragen zu…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Weitere Zeitschriften

BMW Magazin

BMW Magazin

Unter dem Motto „DRIVEN" steht das BMW Magazin für Antrieb, Leidenschaft und Energie − und die Haltung, im Leben niemals stehen zu bleiben.Das Kundenmagazin der BMW AG inszeniert die neuesten ...

Demeter-Gartenrundbrief

Demeter-Gartenrundbrief

Einzige Gartenzeitung mit Anleitungen und Erfahrungsberichten zum biologisch-dynamischen Anbau im Hausgarten (Demeter-Anbau). Mit regelmäßigem Arbeitskalender, Aussaat-/Pflanzzeiten, Neuigkeiten ...

DHS

DHS

Die Flugzeuge der NVA Neben unser F-40 Reihe, soll mit der DHS die Geschichte der "anderen" deutschen Luftwaffe, den Luftstreitkräften der Nationalen Volksarmee (NVA-LSK) der ehemaligen DDR ...

DSD Der Sicherheitsdienst

DSD Der Sicherheitsdienst

Der "DSD – Der Sicherheitsdienst" ist das Magazin der Sicherheitswirtschaft. Es erscheint viermal jährlich und mit einer Auflage von 11.000 Exemplaren. Der DSD informiert über aktuelle Themen ...

ea evangelische aspekte

ea evangelische aspekte

evangelische Beiträge zum Leben in Kirche und Gesellschaft Die Evangelische Akademikerschaft in Deutschland ist Herausgeberin der Zeitschrift evangelische aspekte Sie erscheint viermal im Jahr. In ...

F- 40

F- 40

Die Flugzeuge der Bundeswehr, Die F-40 Reihe behandelt das eingesetzte Fluggerät der Bundeswehr seit dem Aufbau von Luftwaffe, Heer und Marine. Jede Ausgabe befasst sich mit der genaue Entwicklungs- ...