Sie sind hier
E-Book

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 20b

Three Carbon-Heteroatom Bonds: Esters, and Lactones; Peroxy Acids and R(CO)OX Compounds; R(CO)X, X=S, Se, Te

AutorDaniel Bellus, Gwilherm Evano, Julien Beignet, Robert Garbacci, Sherry R. Chemler, Steven J. Collier
VerlagGeorg Thieme Verlag KG
Erscheinungsjahr2014
Seitenanzahl1165 Seiten
ISBN9783131719416
FormatPDF/ePUB
KopierschutzWasserzeichen
GerätePC/MAC/eReader/Tablet
Preis2199,99 EUR
Science of Synthesis provides a critical review of the synthetic methodology developed from the early 1800s to date for the entire field of organic and organometallic chemistry. As the only resource providing full-text descriptions of organic transformations and synthetic methods as well as experimental procedures, Science of Synthesis is therefore a unique chemical information tool. Over 1000 world-renowned experts have chosen the most important molecular transformations for a class of organic compounds and elaborated on their scope and limitations. The systematic, logical and consistent organization of the synthetic methods for each functional group enables users to quickly find out which methods are useful for a particular synthesis and which are not. Effective and practical experimental procedures can be implemented quickly and easily in the lab.// The content of this e-book was originally published in October 2006.

Science of Synthesis

Kaufen Sie hier:

Horizontale Tabs

Blick ins Buch
Inhaltsverzeichnis
Science of Synthesis – Volume 20b: Three Carbon--Heteroatom Bonds: Esters and Lactones Peroxy Acids and R(CO)OX Compounds R(CO)X, X = S, Se, Te1
Title page3
Imprint5
Preface6
Volume Editor's Preface8
Overview10
Table of Contents12
20.5 Product Class 5: Carboxylic Acid Esters40
20.5.1 Product Subclass 1: Alkyl Alkanoates40
20.5.1.1 Synthesis from Carbonic Acid Derivatives62
20.5.1.1.1 Method 1: Use of Carbonic Acid Diesters62
20.5.1.1.1.1 Variation 1: Reactions with Enolates62
20.5.1.1.1.2 Variation 2: Reactions with Carbanions without Stabilizing Electron-Withdrawing a-Heteroatom Groups67
20.5.1.1.1.3 Variation 3: Reaction with a-Heteroatom-Stabilized Carbanions70
20.5.1.1.1.4 Variation 4: Intramolecular Rearrangements72
20.5.1.1.2 Method 2: Use of Haloformates75
20.5.1.1.2.1 Variation 1: Reactions with Enolates76
20.5.1.1.2.2 Variation 2: Reaction with Carbanions without Stabilizing Electron-Withdrawing a-Heteroatom Groups80
20.5.1.1.2.3 Variation 3: Reaction with a-Heteroatom-Stabilized Carbanions85
20.5.1.1.2.4 Variation 4: Other Syntheses88
20.5.1.1.3 Method 3: Use of Cyanoformate Esters90
20.5.1.1.3.1 Variation 1: Reaction with Enolates91
20.5.1.1.3.2 Variation 2: Using Other Carbon Nucleophiles95
20.5.1.1.3.3 Variation 3: Novel Reactions97
20.5.1.1.4 Method 4: Use of Di-tert-butyl Dicarbonate99
20.5.1.2 Synthesis from Carboxylic Acids and Derivatives108
20.5.1.2.1 Method 1: Synthesis from Carboxylic Acids108
20.5.1.2.1.1 Variation 1: Phosphorus Activation of Alcohols (Mitsunobu Reaction)108
20.5.1.2.1.2 Variation 2: Dicyclohexylcarbodiimide Activation of Acids109
20.5.1.2.1.3 Variation 3: Direct Condensation of Acids and Alcohols Catalyzed by a Lewis Acid110
20.5.1.2.1.4 Variation 4: Direct Condensation of Acids and Alcohols Using Ammonium Salts111
20.5.1.2.2 Method 2: Synthesis from Acid Halides112
20.5.1.2.3 Method 3: Synthesis from Acid Anhydrides112
20.5.1.2.4 Method 4: Synthesis from Amides114
20.5.1.2.5 Method 5: Synthesis from 2-Alkyl-4,5-dihydrooxazoles114
20.5.1.2.6 Method 6: Synthesis from Nitriles115
20.5.1.2.7 Method 7: Synthesis from Ketenes116
20.5.1.2.7.1 Variation 1: Nucleophilic Addition of Alcohols116
20.5.1.2.7.2 Variation 2: Asymmetric Chlorination119
20.5.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)122
20.5.1.3.1 Synthesis from Aldehydes122
20.5.1.3.1.1 Oxidative Processes122
20.5.1.3.1.1.1 Method 1: Using Manganese(IV) Oxide and Sodium Cyanide122
20.5.1.3.1.1.2 Method 2: Using Bromine124
20.5.1.3.1.1.2.1 Variation 1: Using Pyridinium Tribromide126
20.5.1.3.1.1.3 Method 3: Using Iodine127
20.5.1.3.1.1.4 Method 4: Using Pyridinium Dichromate128
20.5.1.3.1.1.5 Method 5: Using Sodium or Calcium Hypochlorites129
20.5.1.3.1.1.6 Method 6: Using N-Bromosuccinimide131
20.5.1.3.1.1.6.1 Variation 1: Using N-Bromosuccinimide and Alkoxytrimethylsilanes or Alkoxytrialkylstannanes131
20.5.1.3.1.1.7 Method 7: Using N-Iodosuccinimide132
20.5.1.3.1.1.8 Method 8: Using Caro's Acid133
20.5.1.3.1.1.9 Method 9: Using Oxone133
20.5.1.3.1.1.10 Method 10: Using Trichloroisocyanuric Acid134
20.5.1.3.1.1.11 Method 11: Using Transition-Metal Catalysts135
20.5.1.3.1.1.12 Method 12: Using Electrochemical Oxidation136
20.5.1.3.1.1.13 Method 13: Using Ozone138
20.5.1.3.1.1.14 Method 14: Using Hydrogen Peroxide139
20.5.1.3.1.2 Oxidation/Reduction Processes140
20.5.1.3.1.2.1 Method 1: Using the Tishchenko Reaction140
20.5.1.3.1.2.1.1 Variation 1: Using the Homo Aldol--Tishchenko Reaction142
20.5.1.3.1.2.1.2 Variation 2: Using the Hetero Aldol--Tishchenko Reaction142
20.5.1.3.1.2.1.3 Variation 3: Using the Evans--Tishchenko Reaction144
20.5.1.3.1.2.2 Method 2: Intramolecular Hydroacylation Reactions146
20.5.1.3.2 Synthesis from Ketones via the Baeyer--Villiger Reaction147
20.5.1.3.2.1 Method 1: Using Pertrifluoroacetic Acid148
20.5.1.3.2.2 Method 2: Using Peroxybenzoic Acids149
20.5.1.3.2.3 Method 3: Using Hydrogen Peroxide150
20.5.1.3.2.4 Method 4: Using Bis(trimethylsilyl) Peroxide151
20.5.1.3.2.5 Method 5: Using Enzymes152
20.5.1.3.3 Synthesis from Acetals152
20.5.1.3.3.1 Method 1: Using Ozone152
20.5.1.3.3.2 Method 2: Using Hypochlorous Acid154
20.5.1.3.3.3 Method 3: Using N-Bromosuccinimide155
20.5.1.3.3.4 Method 4: Using Peroxy Acids156
20.5.1.3.3.5 Method 5: Using Oxone157
20.5.1.3.3.6 Method 6: Using Caro's Acid158
20.5.1.3.3.7 Method 7: Using tert-Butyl Hydroperoxide and a Catalyst159
20.5.1.3.3.8 Method 8: Photochemical Oxidation160
20.5.1.3.3.9 Method 9: Using Potassium Permanganate160
20.5.1.3.4 Synthesis from Enol Ethers161
20.5.1.3.4.1 Method 1: Using Ozone161
20.5.1.3.4.2 Method 2: Using 3-Chloroperoxybenzoic Acid162
20.5.1.3.4.3 Method 3: Using Chromium(VI) Oxide163
20.5.1.3.4.4 Method 4: Using Pyridinium Chlorochromate164
20.5.1.3.5 Synthesis from a-Hydroxy Carbonyl Compounds and 1,2-Diones165
20.5.1.3.5.1 Method 1: Using Lead(IV) Acetate165
20.5.1.3.5.2 Method 2: Using Oxone or Potassium Peroxymonosulfate166
20.5.1.3.5.3 Method 3: Using Dioxygen168
20.5.1.3.5.4 Method 4: Using Electrochemistry169
20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives)174
20.5.1.4.1 Alkoxycarbonylation of Organometallic Compounds174
20.5.1.4.1.1 Method 1: Alkoxycarbonylation of Organolithium Compounds174
20.5.1.4.1.2 Method 2: Alkoxycarbonylation of Organomagnesium Compounds175
20.5.1.4.1.3 Method 3: Alkoxycarbonylation of Organotransition-Metal Compounds176
20.5.1.4.2 Alkoxycarbonylation of Alkyl Halides178
20.5.1.4.2.1 Method 1: Alkoxycarbonylation of Alkyl Halides Promoted by Acids178
20.5.1.4.2.2 Method 2: Alkoxycarbonylation of Alkyl Halides Promoted by Transition-Metal Catalysts179
20.5.1.4.2.3 Method 3: Alkoxycarbonylation of Alkyl Iodides Promoted by Photolysis181
20.5.1.4.3 Oxidation of Primary Alcohols181
20.5.1.4.3.1 Method 1: Oxidation by Halonium-Generating Combinations182
20.5.1.4.3.2 Method 2: Oxidation by Chromium(IV) Oxide183
20.5.1.4.3.3 Method 3: Transition-Metal-Catalyzed Oxidations183
20.5.1.4.4 Oxidation of Ethers, Silyl Ethers, or Stannyl Ethers184
20.5.1.4.4.1 Method 1: Oxidation of Ethers185
20.5.1.4.4.1.1 Variation 1: Oxidation by Halonium-Generating Combinations185
20.5.1.4.4.1.2 Variation 2: Oxidation by Stoichiometric Transition-Metal Reagents185
20.5.1.4.4.1.3 Variation 3: Transition-Metal-Catalyzed Oxidation186
20.5.1.4.4.2 Method 2: Oxidation of Silyl and Stannyl Ethers Using N-Bromosuccinimide187
20.5.1.5 Synthesis from Alkenes (Excluding Reactions with Carboxylic Acid Derivatives)192
20.5.1.5.1 Method 1: Oxidative C==C Bond Cleavage192
20.5.1.5.2 Method 2: Hydroesterification with Carbon Monoxide (Reppe Carbonylation)194
20.5.1.5.3 Method 3: Hydroesterification with Formate Esters199
20.5.1.5.4 Method 4: Cross Metathesis with Conjugated Esters203
20.5.1.5.5 Method 5: Synthesis via Hydroboration with Two-Carbon Homologation205
20.5.1.5.6 Method 6: Addition of Acetate Esters to Alkenes208
20.5.1.5.7 Method 7: Hydroacyloxylation210
20.5.1.5.7.1 Variation 1: Markovnikov Hydroacyloxylation Using Carboxylic Acids211
20.5.1.5.7.2 Variation 2: Anti-Markovnikov Hydroacyloxylation via Hydroboration215
20.5.1.5.8 Method 8: Allylic Acyloxylation215
20.5.1.5.8.1 Variation 1: Allylic Acyloxylation without Double-Bond Migration215
20.5.1.5.8.2 Variation 2: Allylic Acyloxylation with Double-Bond Migration218
20.5.1.5.9 Method 9: The Prévost Reaction219
20.5.1.6 Synthesis by Rearrangement224
20.5.1.6.1 Method 1: Baeyer--Villiger Oxidation224
20.5.1.6.2 Method 2: Cope Rearrangement228
20.5.1.6.2.1 Variation 1: Cope Rearrangement of Silyl Cyanohydrins228
20.5.1.6.2.2 Variation 2: Cope Rearrangement of Divinylcyclopropanes230
20.5.1.6.3 Method 3: Rearrangement of Vinylcyclopropanes233
20.5.1.6.4 Method 4: Rearrangement of Ketene Acetals236
20.5.1.6.4.1 Variation 1: Rearrangement of Ketene Acetals Derived from Ortho Esters (The Johnson Protocol)237
20.5.1.6.4.2 Variation 2: Rearrangement of Ketene Acetals Derived from Selenoxides240
20.5.1.6.5 Method 5: [2,3]-Wittig Rearrangement of a-(Alkenyloxy) Esters
242
20.5.1.6.5.1 Variation 1: Via Lithium Enolates242
20.5.1.6.5.2 Variation 2: Via Tin, Titanium, and Zirconium Enolates245
20.5.1.6.6 Method 6: [3,3] Rearrangements of Allylic Esters246
20.5.1.6.7 Method 7: The Pummerer Rearrangement249
20.5.1.6.8 Method 8: Palladium-Catalyzed Carbonylation with Rearrangement251
20.5.1.6.9 Method 9: Favorskii Rearrangement252
20.5.1.6.10 Method 10: Arndt--Eistert and Related Reactions254
20.5.1.7 Synthesis with Retention of the Functional Group260
20.5.1.7.1 Conjugate Addition of a,ß-Unsaturated Esters260
20.5.1.7.1.1 Method 1: Addition of Organocopper Reagents260
20.5.1.7.1.2 Method 2: Addition of Organoborane Reagents262
20.5.1.7.1.3 Method 3: Addition of Nitroalkanes265
20.5.1.7.1.4 Method 4: Hydrohalogenation Reactions of Substituted Allenoates266
20.5.1.7.1.5 Method 5: Addition of Alkyl Radicals267
20.5.1.7.1.6 Method 6: Addition of Organomanganese(II) Reagents268
20.5.1.7.1.7 Method 7: Addition of Grignard Reagents268
20.5.1.7.1.8 Method 8: Nickel(0)-Catalyzed Conjugate Additions269
20.5.1.7.1.9 Method 9: Reductive C--C Bond Formation of a,ß-Unsaturated Esters270
20.5.1.7.1.10 Method 10: Addition of Allyltrimethylsilane271
20.5.1.7.2 Alkylations of Alkyl Alkanoates272
20.5.1.7.2.1 Method 1: a-Alkylation272
20.5.1.7.2.1.1 Variation 1: Alkylation with Strong Base and an Alkylating Agent272
20.5.1.7.2.1.2 Variation 2: Metal-Complex-Catalyzed a-Alkylation274
20.5.1.7.2.1.3 Variation 3: Michael Addition of Ester Enolates275
20.5.1.7.2.2 Method 2: Deconjugate Alkylation276
20.5.1.7.2.3 Method 3: Reductive Alkylation277
20.5.1.7.2.4 Method 4: Ene Reaction278
20.5.1.7.2.5 Method 5: Asymmetric Alkylation279
20.5.1.7.3 Cross-Coupling Reactions Catalyzed by Transition-Metal Complexes280
20.5.1.7.3.1 Method 1: Sonogashira Coupling280
20.5.1.7.3.2 Method 2: Hydrovinylation281
20.5.1.7.3.3 Method 3: Hydroformylation282
20.5.1.7.3.4 Method 4: Other Palladium-Complex-Catalyzed Cross Couplings283
20.5.1.7.4 Cleavage Reactions286
20.5.1.7.4.1 Method 1: Cleavage of Oxalates286
20.5.1.7.4.2 Method 2: Cleavage of Malonates by Decarboxylation287
20.5.1.7.4.3 Method 3: Cleavage of a-Cyano Esters by Decyanation288
20.5.1.7.4.4 Method 4: Cleavage of ß-Oxo Esters290
20.5.1.7.5 Oxidation Reactions291
20.5.1.7.5.1 Method 1: Ozonolysis291
20.5.1.7.5.2 Method 2: Photooxygenation292
20.5.1.7.6 Conjugate Reduction of a,ß-Unsaturated Esters292
20.5.1.7.6.1 Method 1: Use of Aluminum Hydride Reducing Agents293
20.5.1.7.6.2 Method 2: Use of Borohydride Reducing Agents293
20.5.1.7.6.3 Method 3: Reduction Using Samarium(II) Iodide295
20.5.1.7.6.4 Method 4: Use of Metals in Protic Solvents as Reducing Agents296
20.5.1.7.6.5 Method 5: Hydrostannation297
20.5.1.7.6.6 Method 6: Use of Hydrosilane Reducing Agents297
20.5.1.7.6.7 Method 7: Use of Sodium Dithionite Reducing Agents299
20.5.1.7.6.8 Method 8: Asymmetric Conjugate Reduction299
20.5.1.7.7 Selective Reduction of Distant Multiple Bonds in Unsaturated Esters300
20.5.1.7.7.1 Method 1: Reduction of Triple Bonds301
20.5.1.7.7.2 Method 2: Reduction of Double Bonds302
20.5.1.7.8 Chemoselective Hydrogenations302
20.5.1.7.8.1 Method 1: Heterogeneous Hydrogenations303
20.5.1.7.8.2 Method 2: Homogeneous Hydrogenations304
20.5.1.7.8.3 Method 3: Asymmetric Hydrogenations306
20.5.1.7.9 Synthesis from Lactones by Ring Opening308
20.5.1.7.9.1 Method 1: Ring Opening under Basic Conditions308
20.5.1.7.9.2 Method 2: Ring Opening under Acidic Conditions309
20.5.1.7.9.3 Method 3: Enzyme-Catalyzed Ring Opening310
20.5.1.7.10 Synthesis from Alkyl Formates311
20.5.1.7.10.1 Method 1: Hydroesterifications Catalyzed by Transition-Metal Complexes311
20.5.1.7.10.2 Method 2: Free-Radical Addition312
20.5.1.7.10.3 Method 3: Palladium-Catalyzed Reaction with Nitrobenzene313
20.5.1.7.10.4 Method 4: Carbonylation Reactions of Formates with Organic Halides314
20.5.1.7.11 Isomerizations314
20.5.1.7.11.1 Method 1: Deconjugation314
20.5.1.7.11.2 Method 2: Other Isomerizations316
20.5.1.7.12 Alkene Metathesis317
20.5.1.7.12.1 Method 1: Metathesis with Tungsten-Based Catalysts317
20.5.1.7.12.2 Method 2: Metathesis with Molybdenum-Based Catalysts318
20.5.1.7.12.3 Method 3: Metathesis with Ruthenium-Based Catalysts320
20.5.1.7.12.4 Method 4: Metathesis with Rhenium-Based Catalysts322
20.5.1.7.13 Transesterification323
20.5.1.7.13.1 Method 1: Transesterification without Catalysis323
20.5.1.7.13.2 Method 2: Transesterification with Chemical Catalysis324
20.5.1.7.13.2.1 Variation 1: By Brønsted Acids324
20.5.1.7.13.2.2 Variation 2: By Lewis Acids325
20.5.1.7.13.2.3 Variation 3: By Solid Acids327
20.5.1.7.13.2.4 Variation 4: By Bases328
20.5.1.7.13.3 Method 3: Transesterification with Enzymes329
20.5.1.7.14 Kinetic Resolution331
20.5.1.7.14.1 Method 1: Resolution with Enzymatic Catalysis331
20.5.1.7.14.2 Method 2: Non-Enzymatic Resolution333
20.5.2 Product Subclass 2: Arenedicarboxylic Acid Esters344
20.5.2.1 Synthesis of Product Subclass 2344
20.5.2.1.1 Method 1: Direct Esterification of Arenedicarboxylic Acids Using Alkyl Halides344
20.5.2.1.2 Method 2: Direct Esterification of Arenedicarboxylic Acids and Anhydrides Using Alcohols345
20.5.2.1.2.1 Variation 1: Using a Morpholinium Salt as Catalyst345
20.5.2.1.2.2 Variation 2: Using Heteropolyacids as Catalysts346
20.5.2.1.3 Method 3: Direct Esterification of Arenedicarboxylic Acids Using Pentafluorophenol and N,N'-Dicyclohexylcarbodiimide347
20.5.2.1.4 Method 4: Synthesis of Arene-1,2-dicarboxylic Acid Esters by Diels--Alder Reaction Followed by Aromatization347
20.5.2.1.4.1 Variation 1: From 2H-Pyran-2-ones347
20.5.2.1.4.2 Variation 2: From 4-Nitrostyrene349
20.5.2.1.4.3 Variation 3: From Substituted Benzo[c]furan350
20.5.2.1.5 Methods 5: Miscellaneous Methods350
20.5.3 Product Subclass 3: Butenedioic and Butynedioic Acid Esters354
20.5.3.1 Synthesis of Product Subclass 3354
20.5.3.1.1 Method 1: Anhydride Cleavage354
20.5.3.1.1.1 Variation 1: Solvolysis of Maleic Anhydride354
20.5.3.1.1.2 Variation 2: Using Lactam Acetals355
20.5.3.1.2 Method 2: Carbenoid Dimerization356
20.5.3.1.2.1 Variation 1: Ruthenium-Mediated Reactions356
20.5.3.1.2.2 Variation 2: Rhodium-Mediated Reactions358
20.5.3.1.2.3 Variation 3: Copper-Mediated Reactions358
20.5.3.1.3 Method 3: Phosphorus-Based Alkenations359
20.5.3.1.3.1 Variation 1: From Thiiranes359
20.5.3.1.3.2 Variation 2: From Lithiophosphoranes361
20.5.3.1.4 Method 4: 1,4-Addition of Alcohols362
20.5.3.1.4.1 Variation 1: Organic Base Mediated Reactions362
20.5.3.1.4.2 Variation 2: Titanium-Mediated Reactions362
20.5.3.1.4.3 Variation 3: Lead-Mediated Reactions363
20.5.3.1.4.4 Variation 4: Silver-Mediated Reactions364
20.5.3.1.5 Method 5: Elimination Protocols365
20.5.3.1.5.1 Variation 1: From Aspartate Esters365
20.5.3.1.5.2 Variation 2: From Monohalosuccinic Acid Esters366
20.5.3.1.5.3 Variation 3: From Hydroxysuccinic Acid Esters367
20.5.3.1.5.4 Variation 4: From Dibromosuccinic Acid Esters with Dimethylformamide367
20.5.3.1.5.5 Variation 5: From Tartrates via Phosphinate Activation368
20.5.3.1.5.6 Variation 6: From Tartrates via Cyclic Sulfates369
20.5.3.1.5.7 Variation 7: From Bromosuccinic Acid Esters370
20.5.3.1.5.8 Variation 8: From Dibromosuccinates with Sodium Dithionite371
20.5.3.1.5.9 Variation 9: From vic-Diols via 1,3-Dioxolanes372
20.5.3.1.5.10 Variation 10: From vic-Diols via Phosphonium Sulfates373
20.5.3.1.5.11 Variation 11: From vic-Diols with Sodium Sulfide375
20.5.3.1.5.12 Variation 12: From vic-Diols via Thermal Elimination375
20.5.3.1.6 Method 6: Semihydrogenation376
20.5.3.1.6.1 Variation 1: Using Homogeneous Palladium Catalysts376
20.5.3.1.6.2 Variation 2: Using Hydrosilane Reagents377
20.5.3.1.6.3 Variation 3: Using Nickel Boride Catalysts378
20.5.3.1.6.4 Variation 4: Using a Polymer-Supported Palladium Catalyst379
20.5.3.1.6.5 Variation 5: Using a Rhodium Hydride Complex379
20.5.3.1.6.6 Variation 6: Using an Indium Hydride Complex380
20.5.3.1.7 Methods 7: Other Methods381
20.5.3.1.7.1 Variation 1: Phosphine Additions to Butynedioates381
20.5.3.1.7.2 Variation 2: Carbene Additions to Maleic Anhydride Derivatives382
20.5.4 Product Subclass 4: Alkanedioic Acid Esters384
20.5.4.1 Synthesis of Product Subclass 4384
20.5.4.1.1 Method 1: Esterification of Oxalic Acid by the Fischer Method384
20.5.4.1.2 Method 2: Oxalate Esters by Nucleophilic Acyl Substitution on Activated Oxalyl Derivatives385
20.5.4.1.2.1 Variation 1: From Oxalyl Chloride385
20.5.4.1.2.2 Variation 2: From Ethyl Cyano(oxo)acetate385
20.5.4.1.3 Method 3: Oxalate Esters by Oxidative Methods386
20.5.4.1.3.1 Variation 1: Palladium-Mediated Oxidative Coupling of Carbon Monoxide386
20.5.4.1.3.2 Variation 2: Oxidative Cleavage of 2-Chlorobuta-1,3-diene387
20.5.4.1.4 Method 4: Esterification of Malonic Acids387
20.5.4.1.4.1 Variation 1: Using Isobutene387
20.5.4.1.4.2 Variation 2: Via the Monoacid Chloride388
20.5.4.1.4.3 Variation 3: Via Mixed Carbonic Anhydrides389
20.5.4.1.5 Method 5: Malonate Esters by Alkylation of Malonate Derivatives390
20.5.4.1.5.1 Variation 1: Via Monoalkylation of Malonate Diesters390
20.5.4.1.5.2 Variation 2: Phase-Transfer-Catalyzed Dialkylation of Malonates391
20.5.4.1.5.3 Variation 3: Intramolecular Cyclization of .-(Bromoalkyl)malonates392
20.5.4.1.5.4 Variation 4: Transition-Metal-Mediated Alkylations393
20.5.4.1.5.5 Variation 5: Alkylation--Decarboxylation of Methanetricarboxylates393
20.5.4.1.5.6 Variation 6: Via Alkylation of Meldrum's Acid394
20.5.4.1.6 Method 6: Malonate Esters by Acylation of Malonate Derivatives395
20.5.4.1.6.1 Variation 1: Via Ethoxymagnesium Malonates395
20.5.4.1.6.2 Variation 2: C-Acylation Using Magnesium Oxide396
20.5.4.1.6.3 Variation 3: C-Acylation Using Soft Enolization397
20.5.4.1.7 Method 7: Malonate Esters by Conjugate Additions to Malonate Derivatives398
20.5.4.1.7.1 Variation 1: Reduction of Alkylidenemalonates with Sodium Cyanoborohydride398
20.5.4.1.7.2 Variation 2: Grignard Additions to Alkylidenemalonates398
20.5.4.1.7.3 Variation 3: Phase-Transfer-Catalyzed Michael Addition of Malonate Enolates399
20.5.4.1.8 Method 8: Malonate Esters by Knoevenagel Condensation of Malonates400
20.5.4.1.8.1 Variation 1: With Acetaldehyde and Acetic Anhydride400
20.5.4.1.8.2 Variation 2: With Paraformaldehyde and Copper(II) Acetate400
20.5.4.1.8.3 Variation 3: From Pyrolysis of Malonate Diels--Alder Adducts401
20.5.4.1.9 Method 9: Malonate Esters by Claisen Condensations with Oxalic Acid Esters402
20.5.4.1.10 Method 10: Malonate Esters by Arylation of Malonate Derivatives403
20.5.4.1.10.1 Variation 1: Via Electrophilic Aromatic Substitution403
20.5.4.1.10.2 Variation 2: Via Nucleophilic Aromatic Substitution on Malonyl--Iron--Arene Complexes405
20.5.4.1.11 Method 11: Malonate Esters by Addition of Allylsilanes to Activated Cyclopropanes405
20.5.4.1.12 Method 12: Malonate Esters by Dichlorination of Malonates with Trifluoromethanesulfonyl Chloride406
20.5.4.1.13 Method 13: Esterification of Succinic Acid407
20.5.4.1.14 Method 14: Succinate Esters by Reduction of Butenedioates407
20.5.4.1.14.1 Variation 1: Lewis Acid Mediated Reduction of Maleates407
20.5.4.1.14.2 Variation 2: Ruthenium-Mediated Hydrogenation of 2-Methylenesuccinate Esters408
20.5.4.1.14.3 Variation 3: Rhodium-Mediated Hydrogenation of 2-Methylenesuccinate Esters409
20.5.4.1.15 Method 15: Succinate Esters by Alkene Dimerization410
20.5.4.1.15.1 Variation 1: Radical-Based Methods410
20.5.4.1.15.2 Variation 2: Oxidative Dimerization of Titanium Enolates411
20.5.4.1.15.3 Variation 3: Oxidative Dimerization of Organocuprates412
20.5.4.1.16 Method 16: Succinate Esters by Rearrangement Reactions413
20.5.4.1.16.1 Variation 1: Ring Opening of Cyclopropanes413
20.5.4.1.16.2 Variation 2: Malonate Displacements414
20.5.4.1.16.3 Variation 3: Allylmalonate Rearrangement415
20.5.4.1.17 Method 17: Succinate Esters by Carbonylation416
20.5.4.1.17.1 Variation 1: Dicarbonylation of But-2-enes416
20.5.4.1.17.2 Variation 2: Dicarbonylation of Terminal Alkenes and Cycloalkenes417
20.5.4.1.17.3 Variation 3: Monocarbonylation of Acrylates419
20.5.4.1.17.4 Variation 4: From Allylic Carbonates420
20.5.4.1.18 Method 18: Succinate Esters by Conjugate Additions420
20.5.4.1.18.1 Variation 1: Reaction of Thiols with Butenedioates420
20.5.4.1.18.2 Variation 2: Reaction of Enamines with Nitroalkenes421
20.5.4.1.18.3 Variation 3: Reaction of Cyanohydrins with Butenedioates422
20.5.4.1.19 Method 19: Succinate Esters by Stobbe Condensations423
20.5.4.1.20 Method 20: Succinate Esters by a-Alkylation of Succinoyl Derivatives424
20.5.4.1.20.1 Variation 1: Using an Organometallic Auxiliary424
20.5.4.1.20.2 Variation 2: Using Malate Esters425
20.5.4.1.21 Method 21: Succinate Esters by Asymmetric Nucleophilic Addition Using a Chiral Ketone Auxiliary426
20.5.4.1.22 Method 22: Succinate Esters by Stereoselective [2,3]-Wittig Rearrangement427
20.5.4.1.23 Method 23: Succinate Esters by Asymmetric Alkylation Using N-Acyloxazolidinones (Evans Asymmetric Alkylation)428
20.5.4.1.23.1 Variation 1: Application to the Synthesis of a Pharmaceutical Agent429
20.5.4.1.24 Method 24: Succinate Esters by Aldol Approaches430
20.5.4.1.24.1 Variation 1: Using Chiral Imines430
20.5.4.1.24.2 Variation 2: 2-Substituted 2-Hydroxysuccinates Using a Stoichiometric Chiral Tin Lewis Acid431
20.5.4.1.24.3 Variation 3: 2,3-Disubstituted 2-Hydroxysuccinates Using a Stoichiometric Chiral Tin Lewis Acid432
20.5.4.1.24.4 Variation 4: Using Chiral N-Acylhydrazones433
20.5.4.1.24.5 Variation 5: Using a Catalytic Chiral Titanium Lewis Acid434
20.5.4.1.24.6 Variation 6: Using a Catalytic Chiral Copper Lewis Acid435
20.5.4.1.24.7 Variation 7: Use of a Fluorous Lewis Acid Catalyst436
20.5.4.1.24.8 Variation 8: Use of a Catalytic Tin Lewis Acid438
20.5.4.1.24.9 Variation 9: Application of a Chiral Tin Lewis Acid in Total Synthesis439
20.5.4.1.24.10 Variation 10: Use of a Cationic Scandium Lewis Acid440
20.5.5 Product Subclass 5: Alkynyl Alkanoates444
20.5.5.1 Synthesis of Product Subclass 5444
20.5.5.1.1 Method 1: Metalation and Rearrangement of a,a-Dihalo Ketones (Alkynolate Anions)444
20.5.5.1.2 Method 2: Reaction of Carboxylic Acids with Alkynyliodonium Salts445
20.5.5.1.2.1 Variation 1: Using Preformed Alkynyliodonium Ions445
20.5.5.1.2.2 Variation 2: Using (Diacyliodo)arenes446
20.5.6 Product Subclass 6: Aryl Alkanoates448
20.5.6.1 Synthesis of Product Subclass 6449
20.5.6.1.1 Method 1: Acylation of Phenols449
20.5.6.1.1.1 Variation 1: Direct Acylation449
20.5.6.1.1.2 Variation 2: Lewis Acid Catalyzed Acylation454
20.5.6.1.1.3 Variation 3: Lewis Base Catalyzed Acylation456
20.5.6.1.2 Method 2: Oxidation of Arenes457
20.5.6.1.2.1 Variation 1: Acyl Peroxide Mediated Oxidation457
20.5.6.1.2.2 Variation 2: Lead(IV) Acetate Mediated Oxidation459
20.5.6.1.3 Method 3: Displacement of Diazonium Groups by Nucleophiles (The Sandmeyer Reaction)459
20.5.7 Product Subclass 7: Alkenyl Alkanoates462
20.5.7.1 Synthesis of Product Subclass 7466
20.5.7.1.1 Method 1: O-Acylation of Enolates466
20.5.7.1.1.1 Variation 1: Kinetic Deprotonation466
20.5.7.1.1.2 Variation 2: Fluoride-Catalyzed O-Acylation of Enolates469
20.5.7.1.1.3 Variation 3: O-Acylation of Enolates and Enols Generated under Equilibrating Conditions471
20.5.7.1.2 Method 2: O-Acylation of Aldehyde Enolates Derived from Alkynoate Anions473
20.5.7.1.3 Method 3: Metal-Catalyzed Alkoxycarbonylation of Alkynes474
20.5.7.1.4 Method 4: Cross-Coupling of Alkenylmercury Halides or Alkenyl Halides with Metal Acetate Salts481
20.5.7.1.5 Method 5: Coupling of Fischer Carbenes with Acid Chlorides483
20.5.7.1.6 Method 6: Alkenation Reactions483
20.5.8 Product Subclass 8: 2-Oxo- and 2-Imino-Substituted Alkanoic Acid Esters, and Related Compounds488
20.5.8.1 Synthesis of Product Subclass 8488
20.5.8.1.1 Method 1: Esterification of 2-Heteroatom-Substituted Acids488
20.5.8.1.2 Method 2: Hydrolysis of 2-Heteroatom-Substituted Esters491
20.5.8.1.3 Method 3: Alcoholysis of 2-Heteroatom-Substituted Nitriles494
20.5.8.1.4 Method 4: Oxidation Reactions495
20.5.8.1.4.1 Variation 1: Oxidation of a-Hydroxy Esters495
20.5.8.1.4.2 Variation 2: Oxidation of a-Diazo Esters497
20.5.8.1.4.3 Variation 3: Oxidation of 3-Oxo-2-(triphenylphosphoranylidene)propanoates498
20.5.8.1.4.4 Variation 4: Oxidation of 2-Alkylidene Esters499
20.5.8.1.5 Method 5: Addition of Organometallic Reagents to Oxalates500
20.5.8.1.6 Method 6: Friedel--Crafts Acylation of Buta-1,3-dienes, Arenes, and Hetarenes503
20.5.8.1.7 Method 7: Sigmatropic Rearrangements505
20.5.8.1.7.1 Variation 1: Claisen Rearrangement of Allyl Vinyl Ethers505
20.5.8.1.7.2 Variation 2: Stevens Rearrangement of N,N-Dimethyl-N-(phenylethynyl)glycinium Bromides506
20.5.8.1.8 Method 8: Hetero-Diels--Alder Reactions507
20.5.8.1.9 Method 9: Aldol Condensations507
20.5.9 Product Subclass 9: 2,2-Diheteroatom-Substituted Alkanoic Acid Esters512
20.5.9.1 Synthesis of Product Subclass 9512
20.5.9.1.1 Method 1: Esterification of 2,2-Diheteroatom-Substituted Acids512
20.5.9.1.2 Method 2: Synthesis by Acetal Formation514
20.5.9.1.2.1 Variation 1: Formation of Acetals and Hemiacetals514
20.5.9.1.2.2 Variation 2: Formation of a,a-Diamino Esters516
20.5.9.1.2.3 Variation 3: Formation of Thioacetals517
20.5.9.1.3 Method 3: Alcoholysis of 2,2-Diheteroatom-Substituted Nitriles517
20.5.9.1.4 Method 4: Oxidation of Alkene Derivatives518
20.5.9.1.5 Method 5: Synthesis by Nucleophilic Attack of the a-Carbon of Esters520
20.5.9.1.5.1 Variation 1: Nucleophilic Substitution at the a-Carbon of 2,2-Diheteroatom-Substituted Esters520
20.5.9.1.5.2 Variation 2: Nucleophilic Substitution at the a-Carbon of Diesters and ß-Oxo Esters521
20.5.9.1.5.3 Variation 3: Metal-Mediated C--C Bond Formation522
20.5.9.1.6 Method 6: Radical-Mediated Transformations of 2-Halo-Substituted Esters523
20.5.9.1.7 Method 7: 1,3-Allylic Rearrangement of a Chiral Acetal524
20.5.9.1.8 Method 8: Rearrangement of (ortho-Nitroarylidene)malonates524
20.5.10 Product Subclass 10: 2-Aminoalkanoic Acid Esters (a-Amino Acid Esters)528
20.5.10.1 Synthesis of Product Subclass 10528
20.5.10.1.1 a,ß-Didehydroamino Acid Esters528
20.5.10.1.1.1 Synthesis of a,ß-Didehydroamino Acid Esters through Palladium(0)-Catalyzed Cross-Coupling Reactions528
20.5.10.1.1.1.1 Method 1: Suzuki Coupling of ß-Bromoamidoacrylates with Aryl- and Vinylboronic Acids528
20.5.10.1.1.1.2 Method 2: Heck Coupling of Amidoacrylates with Aryl and Vinyl Halides529
20.5.10.1.1.2 Synthesis of a,ß-Didehydroamino Esters through Elimination530
20.5.10.1.1.2.1 Method 1: Erlenmeyer Condensation530
20.5.10.1.1.2.2 Method 2: Horner--Emmons Condensation531
20.5.10.1.2 2-Aminoalkanoic Acid Esters532
20.5.10.1.2.1 Introduction of the Side Chain: Alkylation of Glycine and Related Chiral Enolates533
20.5.10.1.2.1.1 Method 1: Alkylation of Chiral Cyclic Enolates533
20.5.10.1.2.1.1.1 Variation 1: Alkylation of Chiral Bis-lactim Ethers533
20.5.10.1.2.1.1.2 Variation 2: Alkylation of Chiral Oxazinones535
20.5.10.1.2.1.2 Method 2: Alkylation of Chiral Acyclic Schiff Bases536
20.5.10.1.2.1.3 Method 3: Alkylation Utilizing Chiral Phase-Transfer Reagents538
20.5.10.1.2.1.4 Method 4: Metal-Mediated Glycine Enolate Alkylation540
20.5.10.1.2.1.4.1 Variation 1: Palladium-Catalyzed Allylation of Glycine Derivatives540
20.5.10.1.2.1.4.2 Variation 2: Gold-Catalyzed Aldol Reactions543
20.5.10.1.2.1.4.3 Variation 3: Titanium-Mediated Aldol Reactions544
20.5.10.1.2.1.4.4 Variation 4: Aluminum--Salen-Catalyzed Aldol Reactions of 5-Alkoxyoxazoles546
20.5.10.1.2.2 Introduction of the a-Amino Group: Nucleophilic Amination547
20.5.10.1.2.2.1 Method 1: Intermolecular Nucleophilic Addition to Chiral Epoxides547
20.5.10.1.2.2.2 Method 2: Intramolecular Nucleophilic Addition to Epoxides548
20.5.10.1.2.2.3 Method 3: Nucleophilic Displacement of Halides550
20.5.10.1.2.2.4 Method 4: Nucleophilic Displacement of Sulfonic Esters and Cyclic Sulfates551
20.5.10.1.2.2.4.1 Variation 1: Displacement of Trifluoromethanesulfonates551
20.5.10.1.2.2.4.2 Variation 2: Opening Cyclic Sulfates552
20.5.10.1.2.2.5 Method 5: Mitsunobu Displacement of an a-Hydroxy Group553
20.5.10.1.2.2.6 Method 6: Nucleophilic Addition to p-Allylpalladium Intermediates553
20.5.10.1.2.3 Introduction of the a-Amino Group: Electrophilic Amination of Enolates555
20.5.10.1.2.3.1 Method 1: Proline Organocatalysis555
20.5.10.1.2.4 Introduction of the a-Hydrogen: Asymmetric Hydrogenation of a,ß-Didehydroamino Acid Esters556
20.5.10.1.2.4.1 Method 1: Homogeneous Catalysis556
20.5.10.1.2.4.1.1 Variation 1: Cationic Rhodium Complexes of Chiral C2-Symmetric Bisphosphines559
20.5.10.1.2.4.1.2 Variation 2: Cationic Rhodium Complexes of Chiral C2-Symmetric Bisphosphinites560
20.5.10.1.2.4.1.3 Variation 3: Cationic Rhodium Complexes of P-Chirogenic Phosphines561
20.5.10.1.2.5 Introduction of the a-Hydrogen: Asymmetric Michael Addition561
20.5.10.1.2.5.1 Method 1: Enantioselective Michael Addition--Hydrogen Atom Transfer561
20.5.10.1.2.5.2 Method 2: Diastereoselective Organocuprate Michael Addition to Chiral Piperazine-2,5-dione Acceptors562
20.5.10.1.2.6 Introduction of Carboxylate: Asymmetric Addition of Nitriles to Imines (Strecker Synthesis)564
20.5.10.1.2.6.1 Method 1: Chiral Binuclear Zirconium-Complex-Catalyzed Strecker Synthesis564
20.5.10.1.2.6.2 Method 2: Chiral Aluminum--Salen Complex Catalyzed Strecker Synthesis565
20.5.10.1.2.7 Introduction of the Side Chain: Asymmetric Addition to Imino Esters567
20.5.10.1.2.7.1 Method 1: Proline-Catalyzed Mannich Additions to Imino Esters567
20.5.10.1.2.7.2 Method 2: Copper-Catalyzed Alkylations of Imino Esters568
20.5.10.1.2.7.3 Method 3: Catalytic Asymmetric Mannich Additions to Imino Esters568
20.5.10.1.2.7.4 Method 4: Catalytic Asymmetric Aza-Henry Addition to Imino Esters569
20.5.10.1.2.7.5 Method 5: Palladium-Catalyzed Silyl Enol Ether Additions of Imino Esters571
20.5.10.1.2.7.6 Method 6: Catalytic Asymmetric Aromatic Additions to Imino Esters572
20.5.10.1.2.7.7 Method 7: Organometallic Additions to Chiral Imino Esters573
20.5.10.1.2.7.8 Method 8: Mannich-Type Reaction of Electron-Rich Aromatic Compounds with Chiral Imino Lactones574
20.5.10.1.2.7.9 Method 9: Rhodium-Catalyzed Addition of Arylboronic Acids to N-(tert-Butylsulfinyl)imino Esters575
20.5.10.1.2.8 Introduction of the Side Chain: Diels--Alder Cycloaddition Reactions577
20.5.10.1.2.8.1 Method 1: Catalytic Asymmetric Diels--Alder Addition to Chiral Imino Esters577
20.5.10.1.2.8.2 Method 2: Asymmetric Diels--Alder Addition to Chiral Imino Esters Chiral Menthyl Derivatives578
20.5.10.1.2.8.3 Method 3: Asymmetric Diels--Alder Addition to Chiral Imino Esters Chiral 1-Phenylethylamine Derivatives578
20.5.10.1.2.9 Introduction of the a-Nitrogen: Sigmatropic Rearrangements579
20.5.10.1.2.9.1 Method 1: Rearrangement of Allylic Trichloroacetimidates579
20.5.10.1.2.9.1.1 Variation 1: Thermal Rearrangement of Chiral Allylic Trichloroacetimidates580
20.5.10.1.2.9.1.2 Variation 2: Enantioselective Palladium-Catalyzed Rearrangement of Prochiral Allylic Trichloroacetimidates581
20.5.10.1.2.10 Addition of the Carboxylate Group: Rearrangements582
20.5.10.1.2.10.1 Method 1: Photolysis of Chromium--Carbene Complexes582
20.5.10.1.3 a-Alkyl-a-aminoalkanoic Acid Esters583
20.5.10.1.3.1 Introduction of the Side Chain: Alkylation of Chiral Amino Acid Enolates584
20.5.10.1.3.1.1 Method 1: Alkylation of Bis-lactim Ethers584
20.5.10.1.3.1.2 Method 2: Alkylation of Schiff Bases585
20.5.10.1.3.1.2.1 Variation 1: Alkylation of Galactodialdehyde Aldimines585
20.5.10.1.3.1.2.2 Variation 2: Alkylation of Camphor-Derived Sultams586
20.5.10.1.3.1.3 Method 3: Transition-Metal-Catalyzed Asymmetric Allylic Alkylation of Azlactones587
20.5.10.1.3.1.3.1 Variation 1: Palladium-Catalyzed Asymmetric Allylic Alkylation of Azlactones588
20.5.10.1.3.1.3.2 Variation 2: Molybdenum-Catalyzed Asymmetric Allylic Alkylation of Azlactones589
20.5.10.1.3.2 Introduction of the Side Chain: Rearrangements590
20.5.10.1.3.2.1 Method 1: Rearrangement of O-Acylated Azlactones590
20.5.10.1.3.3 Introduction of the a-Amino Group: Rearrangement of a,a-Dialkyl-ß-carbonyl Carboxylic Acid Esters591
20.5.10.1.3.3.1 Method 1: Curtius Rearrangement of a,a-Dialkyl ß-Ester Carboxylic Acids592
20.5.10.1.3.3.2 Method 2: Hofmann Rearrangement of a,a-Dialkyl-ß-amido Esters592
20.5.10.1.3.3.3 Method 3: Schmidt Rearrangement of ß-Oxo Esters593
20.5.10.1.3.3.4 Method 4: Beckmann Rearrangement of ß-Oxime Esters594
20.5.11 Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters600
20.5.11.1 Synthesis of Product Subclass 11600
20.5.11.1.1 2-Haloalkanoates600
20.5.11.1.1.1 2-Fluoroalkanoates600
20.5.11.1.1.1.1 Method 1: Electrophilic Fluorination of Alkanoates601
20.5.11.1.1.1.1.1 Variation 1: Fluorination with N-Fluorobis(trifluoromethylsulfonyl)amine601
20.5.11.1.1.1.1.2 Variation 2: Fluorination with 2-Fluoro-1,3,2-benzodithiazole 1,1,3,3-Tetraoxide602
20.5.11.1.1.1.1.3 Variation 3: Catalytic Asymmetric Fluorination of a-Cyano Esters by Treatment with Chiral Palladium Complexes and N-Fluorobis(phenylsulfonyl)amine603
20.5.11.1.1.1.1.4 Variation 4: Catalytic Asymmetric Fluorination of ß-Oxo Esters604
20.5.11.1.1.1.2 Method 2: Kinetic Enzymatic Resolution of Racemic 2-Fluoroalkanoates604
20.5.11.1.1.2 2-Chloroalkanoates605
20.5.11.1.1.2.1 Method 1: Chlorination of Ester Enolates605
20.5.11.1.1.2.1.1 Variation 1: Catalytic Asymmetric Chlorination of ß-Oxo Esters Using Chiral Titanium Lewis Acids606
20.5.11.1.1.2.1.2 Variation 2: Tandem Chlorination/Esterification of Acid Halides606
20.5.11.1.1.2.2 Method 2: Nucleophilic Displacement of a Hydroxy Group608
20.5.11.1.1.3 2-Bromoalkanoates608
20.5.11.1.1.3.1 Method 1: Electrophilic Bromination of Carbon Nucleophiles609
20.5.11.1.1.3.1.1 Variation 1: Catalytic Asymmetric Bromination with Chiral Bis(dihydrooxazole)--Copper(II) Complexes609
20.5.11.1.1.3.1.2 Variation 2: Asymmetric Tandem Bromination/Esterification of Acid Chlorides610
20.5.11.1.1.4 2-Iodoalkanoates610
20.5.11.1.1.4.1 Method 1: Formation of 2-Iodoalkanoates with N-Iodosuccinimide under Microwave Conditions611
20.5.11.1.2 2-Hydroxyalkanoates611
20.5.11.1.2.1 Method 1: Catalytic Asymmetric Hydrogenation of 2-Oxoalkanoates611
20.5.11.1.2.1.1 Variation 1: Homogeneous Catalytic Asymmetric Hydrogenation of 2-Oxoalkanoates612
20.5.11.1.2.1.2 Variation 2: Heterogeneous Catalytic Asymmetric Hydrogenation of 2-Oxoalkanoates613
20.5.11.1.2.1.3 Variation 3: Examples of Industrially Important Enantioselective Hydrogenations614
20.5.11.1.2.2 Method 2: Catalytic Asymmetric C--C Bond-Forming Reactions615
20.5.11.1.2.2.1 Variation 1: Asymmetric Alkylation of 2-Hydroxyacetates616
20.5.11.1.2.2.2 Variation 2: Enantioselective Addition of Silyl Enol Ethers to Ethyl Glyoxylate and 2-Oxoalkanoates617
20.5.11.1.2.3 Method 3: Asymmetric Oxidations618
20.5.11.1.2.3.1 Variation 1: Oxidation of Enolates with Oxaziridines618
20.5.11.1.2.3.2 Variation 2: Sharpless Catalytic Asymmetric Dihydroxylation of a,ß-Unsaturated Esters619
20.5.11.1.2.3.3 Variation 3: Synthesis of the Taxol Side Chain Using the Sharpless Catalytic Asymmetric Aminohydroxylation of Cinnamate Esters621
20.5.11.1.2.4 Method 4: Resolution621
20.5.11.1.3 2-Alkoxyalkanoates623
20.5.11.1.3.1 Method 1: O-Alkylation of a 2-Hydroxyalkanoate623
20.5.11.1.3.2 Method 2: 2-Alkoxyalkanoates by C--C Bond-Forming Reactions623
20.5.11.1.4 2,3-Epoxyalkanoates624
20.5.11.1.4.1 Method 1: Asymmetric Epoxidation of a,ß-Unsaturated Esters with Chiral Dioxiranes625
20.5.11.1.4.2 Method 2: Chiral Manganese(III)--Salen Catalyzed Enantioselective Epoxidation of cis-a,ß-Unsaturated Esters626
20.5.11.1.4.3 Method 3: Catalytic Enantioselective Epoxidation of a,ß-Unsaturated Esters Using a Lanthanide Lewis Acid Catalyst and tert-Butyl Hydroperoxide626
20.5.11.1.5 2-Sulfanylalkanoates627
20.5.11.1.5.1 Method 1: Sulfanylation of Enolates628
20.5.11.1.5.1.1 Variation 1: Sulfanylation of Ester Enolates628
20.5.11.1.5.1.2 Variation 2: Catalytic Enantioselective Sulfanylation of ß-Oxo Esters628
20.5.11.1.5.2 Method 2: Nucleophilic Displacement with Thiolates629
20.5.11.1.5.2.1 Variation 1: Direct Displacement of a Chiral Methanesulfonate629
20.5.11.1.5.2.2 Variation 2: Dynamic Resolution of 2-Bromoalkanoic Acid N-Methylpseudoephedrine Esters with Triphenylmethanethiol630
20.5.11.1.6 2-Selanylalkanoates631
20.5.11.1.6.1 Method 1: Selanylation of Enolates631
20.5.11.1.6.2 Method 2: Synthesis Using the Selenide Anion632
20.5.11.1.6.2.1 Variation 1: Opening of Epoxides632
20.5.11.1.6.2.2 Variation 2: Synthesis of Selenides by Nucleophilic Substitution632
20.5.11.1.7 2-Tellanylalkanoates633
20.5.11.1.7.1 Method 1: Synthesis Using the Telluride Anion633
20.5.11.1.7.2 Method 2: Synthesis from Iodotelluride634
20.5.12 Product Subclass 12: Alk-2-ynoic Acid Esters640
20.5.12.1 Synthesis of Product Subclass 12640
20.5.12.1.1 Method 1: Esterification of Alk-2-ynoic Acids or Derivatives640
20.5.12.1.1.1 Variation 1: Direct Esterification of Alk-2-ynoic Acids640
20.5.12.1.1.2 Variation 2: Alkylation of Alk-2-ynoic Acids or Their Salts646
20.5.12.1.1.3 Variation 3: Alcoholysis of Alk-2-ynoic Acid Derivatives650
20.5.12.1.2 Method 2: Carboxylation of Alk-1-ynes652
20.5.12.1.2.1 Variation 1: Carboxylation of Alk-1-ynes by Deprotonation--Carboxylation652
20.5.12.1.2.2 Variation 2: Carboxylation of Lithium Acetylides Derived from 1,1-Dihaloalkenes Produced from Aldehydes by Corey--Fuchs Alkenation656
20.5.12.1.2.3 Variation 3: Carboxylation of Lithium Acetylides Derived from 1-Haloalkenes658
20.5.12.1.2.4 Variation 4: Palladium-Catalyzed Carboxylation of Alk-1-ynes with Chloroformates658
20.5.12.1.2.5 Variation 5: Palladium-Catalyzed Carboxylation of Alk-1-ynes with Carbon Monoxide and Alcohols659
20.5.12.1.2.6 Variation 6: Copper-Catalyzed Carboxylation of Alk-1-ynes with Carbon Dioxide and Alkyl Bromides661
20.5.12.1.3 Method 3: Synthesis from Alk-2-enoic Acid Esters by Bromination--Dehydrobromination661
20.5.12.1.4 Method 4: Using Wittig-Type Reactions662
20.5.12.1.4.1 Variation 1: Reaction of [(Alkoxycarbonyl)methylene]triphenylphospho-ranes with Acyl Chlorides, Anhydrides, or Carboxylic Acids662
20.5.12.1.4.2 Variation 2: Reaction of [(Ethoxycarbonyl)iodomethyl]triphenyl-phosphonium Iodide with Aldehydes666
20.5.12.1.5 Method 5: Modifications of Propynoic Acid Esters or Derivatives667
20.5.12.1.5.1 Variation 1: Coupling of Propynoic Acid Esters667
20.5.12.1.5.2 Variation 2: Coupling of Bromopropynoic Acid Esters671
20.5.12.1.5.3 Variation 3: Addition of Metalated Propynoic Acid Esters to Electrophiles672
20.5.12.1.6 Method 6: Dehydration of ß-Oxo Esters676
20.5.12.1.7 Method 7: Deaminative Dehydration of a-Diazo-ß-hydroxy Esters Derived from Aldehydes676
20.5.13 Product Subclass 13: Arenecarboxylic Acid Esters682
20.5.13.1 Synthesis of Product Subclass 13682
20.5.13.1.1 Method 1: Friedel--Crafts Acylation682
20.5.13.1.2 Method 2: Oxidation of Benzylic Ethers683
20.5.13.1.3 Method 3: Radical Benzyloxylation684
20.5.13.1.4 Method 4: Metalation/Carbonylation of Arenes685
20.5.13.1.4.1 Variation 1: Direct Metalation685
20.5.13.1.4.2 Variation 2: Reductive Metalation of Haloarenes686
20.5.13.1.4.3 Variation 3: Lithium--Halogen Exchange with Haloarenes687
20.5.13.1.4.4 Variation 4: Metalation of Tricarbonylchromium--.6-Arene Complexes688
20.5.13.1.5 Method 5: Palladium-Mediated C--H Activation and Carbonylation689
20.5.13.1.6 Method 6: Palladium-Catalyzed Carbonylation of Main-Group Arylmetal Species690
20.5.13.1.6.1 Variation 1: Stille Coupling of Alkyl Chloroformates with Arylstannanes690
20.5.13.1.6.2 Variation 2: Carbonylation of Arylboranes with Carbon Monoxide691
20.5.13.1.7 Method 7: Transition-Metal-Catalyzed Carbonylation of Haloarenes691
20.5.13.1.8 Method 8: Construction of the Aromatic Ring by Anionic Methods692
20.5.13.1.8.1 Variation 1: Anionic [3 + 3] Aromatic Ring Formation with Chan's Diene692
20.5.13.1.8.2 Variation 2: Anionic [4 + 2] Aromatic Ring Formation by Phthalide Annulation693
20.5.13.1.8.3 Variation 3: Anionic [5 + 1] Aromatic Ring Formation by Addition to Pyrylium Salts694
20.5.13.1.9 Method 9: Construction of the Aromatic Ring by Radical Cyclizations of ß-Oxo Esters695
20.5.13.1.10 Method 10: Construction of the Aromatic Ring by Cycloadditions695
20.5.13.1.10.1 Variation 1: [4 + 2] Diels--Alder Cycloadditions and Aromatization695
20.5.13.1.10.2 Variation 2: Transition-Metal-Catalyzed [2 + 2 + 2] Cyclotrimerization of Alkynes697
20.5.13.1.11 Method 11: Construction of the Aromatic Ring by Electrocyclization and Elimination697
20.5.13.1.12 Method 12: Oxidative Rearrangement of 2-(Hydroxyaryl) Acylhydrazones698
20.5.13.1.13 Method 13: Lithiation and Alkylation of Benzoate Esters698
20.5.14 Product Subclass 14: Alk-2-enoic Acid Esters702
20.5.14.1 Synthesis of Product Subclass 14702
20.5.14.1.1 Method 1: Alkoxycarbonylation of Alkenyl Organometallics702
20.5.14.1.1.1 Variation 1: Metalation/Alkoxycarbonylation of Alkenyl Ethers, Sulfides, and Enecarbamates702
20.5.14.1.1.2 Variation 2: Reductive Metalation/Alkoxycarbonylation of Haloalkenes703
20.5.14.1.1.3 Variation 3: Reductive Alkoxycarbonylation of Alkynes704
20.5.14.1.1.4 Variation 4: Zirconium-Catalyzed Carboalumination/Alkoxycarbonylation of Alkynes705
20.5.14.1.1.5 Variation 5: Palladium-Catalyzed Carbonylation/Alkoxylation of Alkenyl Electrophiles705
20.5.14.1.2 Method 2: Elimination Reactions706
20.5.14.1.2.1 Variation 1: Oxidative Elimination of Hydrogen from Alkanoic Acid Esters706
20.5.14.1.2.2 Variation 2: Palladium-Mediated Oxidation of Silyl Enol Ethers707
20.5.14.1.2.3 Variation 3: Elimination from ß-Heteroatom-Substituted Alkanoic Acid Esters708
20.5.14.1.2.4 Variation 4: Elimination from a-Heteroatom-Substituted Alkanoic Acid Esters709
20.5.14.1.2.5 Variation 5: Pericyclic syn-Elimination from a-Acetoxy, a-Sulfinyl, and a-Seleninyl Alkanoic Acid Esters710
20.5.14.1.2.6 Variation 6: Reductive Elimination of Vicinal Heteroatom Substituents711
20.5.14.1.2.7 Variation 7: Conversion of a-Oxo Esters into 2-Alkoxy- and 2-Aminoalk-2-enoic Acid Esters712
20.5.14.1.2.8 Variation 8: Conversion of ß-Oxo Esters into 3-Alkoxy- and 3-Aminoalk-2-enoic Acid Esters713
20.5.14.1.3 Method 3: Aldol-Type Condensations714
20.5.14.1.3.1 Variation 1: Knoevenagel and Doebner-Modified Knoevenagel Condensations714
20.5.14.1.3.2 Variation 2: Stobbe Condensation716
20.5.14.1.3.3 Variation 3: Carbonyl Homologation by Siloxyalkynes and Alkoxyalkynes716
20.5.14.1.4 Method 4: Wittig and Related Alkenylations717
20.5.14.1.4.1 Variation 1: Wittig Reaction718
20.5.14.1.4.2 Variation 2: Horner--Wittig Reaction719
20.5.14.1.4.3 Variation 3: Horner--Wadsworth--Emmons Reaction719
20.5.14.1.4.4 Variation 4: The Peterson Alkenation721
20.5.14.1.4.5 Variation 5: Alkenation of a-Oxo Esters722
20.5.14.1.5 Method 5: Eschenmoser Sulfide Contraction723
20.5.14.1.6 Method 6: Semihydrogenation of Alk-2-ynoic Acid Esters723
20.5.14.1.7 Method 7: Phosphine-Catalyzed Internal Redox Isomerization of Alk-2-ynoic Acid Esters to Dienoic Acid Esters725
20.5.14.1.8 Method 8: Conjugate Addition to Alk-2-ynoic Acid Esters726
20.5.14.1.9 Method 9: Cycloadditions of Alk-2-ynoic Acid Esters727
20.5.14.1.10 Method 10: a-Alkylation of Preformed Alk-2-enoic Acid Esters729
20.5.14.1.11 Method 11: Conjugate Addition--Elimination of 3-Heterosubstituted Alk-2-enoic Acid Esters730
20.5.14.1.12 Method 12: Transition-Metal-Catalyzed Cross Couplings of Alk-2-enoic Acid Esters731
20.5.14.1.13 Method 13: Heck Reaction733
20.5.14.1.14 Method 14: Alkene Metathesis734
20.5.15 Product Subclass 15: 3-Oxo- and 3,3-Diheteroatom-Substituted Alkanoic Acid Esters738
20.5.15.1 Synthesis of Product Subclass 15738
20.5.15.1.1 3-Oxoalkanoic Acid Esters738
20.5.15.1.1.1 Method 1: Oxidation of 3-Hydroxyalkanoic Acid Esters738
20.5.15.1.1.2 Method 2: Addition of Methyl Ketones to Carbonyl Compounds739
20.5.15.1.1.2.1 Variation 1: Using Carbonates739
20.5.15.1.1.2.2 Variation 2: Using Cyanoformates739
20.5.15.1.1.2.3 Variation 3: Using Chloroformates740
20.5.15.1.1.3 Method 3: Addition of 2,2-Dimethyl-1,3-dioxane-4,6-dione to Acylating Agents741
20.5.15.1.1.3.1 Variation 1: Using Acid Chlorides741
20.5.15.1.1.3.2 Variation 2: Using Activated Carboxylic Acids742
20.5.15.1.1.3.3 Variation 3: Using Imidates743
20.5.15.1.1.4 Method 4: Addition of Nitroalkanes to Ethyl Glyoxalate743
20.5.15.1.1.5 Method 5: Addition of the Enolates of Acetates to Carbonyl Compounds744
20.5.15.1.1.5.1 Variation 1: Using Acid Chlorides744
20.5.15.1.1.5.2 Variation 2: Using Mixed Anhydrides745
20.5.15.1.1.5.3 Variation 3: Using 1-Alkanoylimidazoles746
20.5.15.1.1.5.4 Variation 4: Using N-Methoxy-N-methylamides746
20.5.15.1.1.5.5 Variation 5: Using a Lithium (Trimethylsilyl)acetate and a 1-Acylimidazole747
20.5.15.1.1.6 Method 6: Addition of Acetates to Acid Chlorides (via a Titanium Enolate)748
20.5.15.1.1.7 Method 7: Addition of Acetates to Carbonyl Compounds (via a Formal Zinc Enolate)748
20.5.15.1.1.7.1 Variation 1: Using a Reformatsky Reagent and an Acid Chloride748
20.5.15.1.1.7.2 Variation 2: Using a Reformatsky Reagent and a Nitrile749
20.5.15.1.1.8 Method 8: Claisen Condensation of Acetates750
20.5.15.1.1.9 Method 9: Rearrangement of (Alkanoylsulfanyl)acetates750
20.5.15.1.1.10 Method 10: Addition of Ethyl Diazoacetate to Aldehydes750
20.5.15.1.1.11 Method 11: Reduction of Ethyl 3-Oxo-2-(triphenylphosphoranylidene)alkanoates751
20.5.15.1.1.12 Method 12: Elimination of a Heterocylic Substituent from a 3-Hetaryl-3-hydroxyalkanoate752
20.5.15.1.1.12.1 Variation 1: Elimination of Pyrrole from 3-Hydroxy-3-(1H-pyrrol-1-yl)alkanoates752
20.5.15.1.1.12.2 Variation 2: Deprotection of tert-Butyl 3-Hydroxy-3-(1-methyl-1H-imidazol-2-yl)nonanoate752
20.5.15.1.1.13 Method 13: Pyrolysis of 3-Hydroxy-2-(phenylsulfinyl)alkanoic Acid Esters753
20.5.15.1.1.14 Method 14: Acylation of 3-Oxoalkanoic Acid Esters753
20.5.15.1.1.14.1 Variation 1: Acylation of Methyl Acetoacetate with Acid Chlorides753
20.5.15.1.1.14.2 Variation 2: Acylation of 3-Oxoalkanoic Acid Esters with Nitriles754
20.5.15.1.1.15 Method 15: Acylation of Malonates755
20.5.15.1.1.15.1 Variation 1: Acylation of Dialkyl Malonates with Acid Chlorides755
20.5.15.1.1.15.2 Variation 2: Acylation of Magnesium Methyl Malonate with 1-Acylimidazoles756
20.5.15.1.1.15.3 Variation 3: Acylation of Ethyl Hydrogen Malonate756
20.5.15.1.1.15.4 Variation 4: Acylation of Methyl Tetrahydro-2H-pyran-2-yl Malonate757
20.5.15.1.1.16 Method 16: Oxidation of Methyl Alk-2-ynoates757
20.5.15.1.1.17 Method 17: Oxidation of Alk-2-enoates758
20.5.15.1.1.17.1 Variation 1: Wacker Oxidation758
20.5.15.1.1.17.2 Variation 2: Epoxidation and Rearrangement of Alk-2-enoic Esters759
20.5.15.1.1.18 Method 18: Acetoacetylation of Alcohols Using Diketene759
20.5.15.1.1.19 Method 19: Addition of Diketene to Aldehydes or Acetals760
20.5.15.1.1.19.1 Variation 1: From Aldehydes760
20.5.15.1.1.19.2 Variation 2: From Acetals761
20.5.15.1.1.20 Method 20: Transesterification of 1,3-Dioxin-4-ones762
20.5.15.1.1.21 Method 21: Alkylation of 3-Oxoalkanoic Acid Esters764
20.5.15.1.2 3,3-Difluoroalkanoic Acid Esters765
20.5.15.1.2.1 Method 1: Fluorination of Ethyl 3-Oxoalkanoates765
20.5.15.1.2.2 Method 2: Reaction of Fluorinated Alkenes and Trimethyl Orthoacetate765
20.5.15.1.2.3 Method 3: Transesterification of 3,3-Difluoroalkanoic Acid Esters766
20.5.15.1.3 3,3-Dioxyalkanoic Acid Esters766
20.5.15.1.3.1 Method 1: Addition of a Silyl Ketene Acetal to 2-Ethoxy-2-methyl-1,3-dioxolane766
20.5.15.1.3.2 Method 2: Addition of a Silyl Ketene Acetal to a 1,3-Dioxolan-2-ylium Cation767
20.5.15.1.3.3 Method 3: Addition of Pyrocatechol to Alkyl Penta-2,3-dienoates767
20.5.15.1.4 3-Oxy-3-sulfanylalkanoic Acid Esters768
20.5.15.1.4.1 Method 1: Addition of 2-Sulfanylphenol to Alkyl Penta-2,3-dienoates768
20.5.15.1.5 3-Amino-3-oxyalkanoic Acid Esters768
20.5.15.1.5.1 Method 1: Addition of the Lithium Enolate of an Ester to 1-Alkanoyl-1H-pyrroles768
20.5.15.1.6 3,3-Disulfanylalkanoic Acid Esters769
20.5.15.1.6.1 Method 1: Addition of 4-Methylbenzene-1,2-dithiol to Methyl Penta-2,3-dienoate769
20.5.15.1.7 3-Amino-3-sulfanylalkanoic Acid Esters769
20.5.15.1.7.1 Method 1: Addition of 2-Aminoethanethiol to an Alk-2-ynoic Acid Ester769
20.5.16 Product Subclass 16: 3-Heteroatom-Substituted Alkanoic Acid Esters772
20.5.16.1 Synthesis of Product Subclass 16772
20.5.16.1.1 Haloalkanoic Acid Esters772
20.5.16.1.1.1 Method 1: C==C Addition Reactions772
20.5.16.1.1.2 Method 2: Nucleophilic Substitutions773
20.5.16.1.1.3 Method 3: Cycloaddition Reactions774
20.5.16.1.1.4 Method 4: Ring Opening776
20.5.16.1.2 Hydroxy- and Sulfanylalkanoic Acid Esters and Derivatives777
20.5.16.1.2.1 Method 1: Addition to a,ß-Unsaturated Esters777
20.5.16.1.2.1.1 Variation 1: Michael Addition777
20.5.16.1.2.1.2 Variation 2: Oxidative Addition778
20.5.16.1.2.2 Method 2: Nucleophilic Substitutions780
20.5.16.1.2.3 Method 3: Cycloaddition Reactions783
20.5.16.1.2.3.1 Variation 1: Cyclopropanation of Functionalized Alkenes783
20.5.16.1.2.3.2 Variation 2: [2 + 2] Cycloaddition784
20.5.16.1.2.3.3 Variation 3: Diels--Alder Reaction786
20.5.16.1.2.4 Method 4: Ring Opening of Cyclic Precursors788
20.5.16.1.2.4.1 Variation 1: Ring Opening of Lactones788
20.5.16.1.2.4.2 Variation 2: Ring Opening of Epoxides789
20.5.16.1.2.5 Method 5: Reduction of ß-Dicarbonyl Compounds790
20.5.16.1.2.5.1 Variation 1: Selective Reductions of ß-Oxo Esters790
20.5.16.1.2.5.2 Variation 2: Monoreduction of Malonates792
20.5.16.1.2.6 Method 6: Oxidation Reactions794
20.5.16.1.2.6.1 Variation 1: Oxidation of a Preexisting Alcohol or Aldehyde Function794
20.5.16.1.2.6.2 Variation 2: “Ex-novo” Oxidative Insertion of the Ester Function796
20.5.16.1.2.6.3 Variation 3: Oxidative Insertion of the Hydroxy Function797
20.5.16.1.2.7 Method 7: Carboxylation Reactions798
20.5.16.1.2.8 Methods 8: Miscellaneous Reactions799
20.5.16.1.3 Amino- and Phosphorylalkanoic Esters and Derivatives799
20.5.16.1.3.1 Method 1: Addition to a,ß-Unsaturated Esters799
20.5.16.1.3.1.1 Variation 1: Michael Addition799
20.5.16.1.3.1.2 Variation 2: Oxidative Addition805
20.5.16.1.3.2 Method 2: Nucleophilic Substitutions807
20.5.16.1.3.3 Method 3: Cycloaddition Reactions809
20.5.16.1.3.3.1 Variation 1: Cyclopropanation of Functionalized Alkenes809
20.5.16.1.3.3.2 Variation 2: [2 + 2] Cycloaddition810
20.5.16.1.3.4 Method 4: Ring Opening of Cyclic Precursors812
20.5.16.1.3.4.1 Variation 1: Ring Opening of Lactams812
20.5.16.1.3.4.2 Variation 2: Ring Opening of Epoxides813
20.5.16.1.3.4.3 Variation 3: Ring Opening of Isoxazolidines814
20.6 Product Class 6: Lactones818
20.6.1 Synthesis of Product Class 6821
20.6.1.1 Method 1: Lactonization821
20.6.1.1.1 Variation 1: Lactonization To Give Five-Membered Lactones821
20.6.1.2 Method 2: Asymmetric Dihydroxylation Followed by Lactonization823
20.6.1.2.1 Variation 1: Butyrolactones from 1,4-Unsaturated Esters823
20.6.1.2.2 Variation 2: Butyrolactones from 1,3-Unsaturated Esters826
20.6.1.2.3 Variation 3: Butyrolactones from Epoxides and C2 Building Blocks828
20.6.1.2.4 Variation 4: Butyrolactones from the Addition of C3 Building Blocks to Carbonyl Compounds835
20.6.1.3 Method 3: Metalation of Aromatic Carboxylic Acid Derivatives841
20.6.1.3.1 Variation 1: Base-Induced Lactonization844
20.6.1.3.2 Variation 2: Lactonization To Give Six-Membered Lactones846
20.6.1.3.3 Variation 3: d-Lactones from the Opening of Epoxides with C3 Building Blocks848
20.6.1.3.4 Variation 4: d-Lactones from the Addition of C4 Building Blocks to Carbonyl Compounds850
20.6.1.3.5 Variation 5: Lactonization To Give Four-Membered Lactones852
20.6.1.4 Method 4: Macrolactonization and Difficult Lactonizations853
20.6.1.4.1 Variation 1: The Corey--Nicolaou Method853
20.6.1.4.2 Variation 2: The Masamune Method856
20.6.1.4.3 Variation 3: The Mukaiyama Method856
20.6.1.4.4 Variation 4: The Steliou Method857
20.6.1.4.5 Variation 5: The Yamaguchi Method859
20.6.1.4.6 Variation 6: Using Other Benzoic Acid Anhydrides862
20.6.1.4.7 Variation 7: The Keck Method863
20.6.1.4.8 Variation 8: Cyclization of 9-Hydroxydecanoic Acid865
20.6.1.4.9 Variation 9: The Trost Method865
20.6.1.4.10 Variation 10: Other Routes867
20.6.1.5 Method 5: Lactones by Cycloalkylating Reactions867
20.6.1.6 Method 6: Mitsunobu Lactonization872
20.6.1.7 Method 7: Lactonization of Unsaturated Carboxylic Acids878
20.6.1.7.1 Variation 1: Proton-Catalyzed Lactonization879
20.6.1.7.2 Variation 2: Halolactonization879
20.6.1.7.3 Variation 3: (Phenylselanyl)- and (Phenylsulfanyl)lactonization890
20.6.1.8 Method 8: Lactones by Intramolecular Epoxide Opening with Carboxy Functions892
20.6.1.9 Method 9: Spiro Lactones by Oxidative Cyclization893
20.6.1.10 Method 10: Lactones by Baeyer--Villiger Oxidation895
20.6.1.10.1 Variation 1: Baeyer--Villiger Oxidation of Cyclobutanones895
20.6.1.10.2 Variation 2: Baeyer--Villiger Oxidation of Monocyclic, Annulated, and Spirocyclic Ketones899
20.6.1.10.3 Variation 3: Baeyer--Villiger Oxidation of Bi- and Polycyclic Ketones906
20.6.1.10.4 Variation 4: Macrolactones by Baeyer--Villiger Oxidation910
20.6.1.10.5 Variation 5: Enzymatic Baeyer--Villiger Reactions911
20.6.1.10.6 Variation 6: Metal-Catalyzed Baeyer--Villiger Oxidation913
20.6.1.11 Method 11: ß-Lactones by [2 + 2]-Cycloaddition Reactions916
20.6.1.12 Method 12: Lactones from Heterocyclic Precursors925
20.6.1.12.1 Variation 1: Reduction of Cyclic Anhydrides to Lactones925
20.6.1.13 Method 13: Butenolides from Furans928
20.6.1.13.1 Variation 1: Unsaturated d-Lactones from Glycals931
20.6.1.14 Methods 14: Other Methods933
20.7 Product Class 7: Peroxy Acids and Derivatives950
20.7.1 Product Subclass 1: Peroxy Acids, Peroxy Acid Salts, and Peroxy Acid Esters950
20.7.1.1 Synthesis of Product Subclass 1950
20.7.1.1.1 Method 1: Synthesis of Phthaloyl Peroxide950
20.7.1.2 Applications of Product Subclass 1 in Organic Synthesis951
20.7.1.2.1 Method 1: Asymmetric Allylic Oxidation of Alkenes951
20.7.1.2.2 Method 2: Diastereofacial Selective Epoxidation955
20.7.1.2.3 Method 3: Hydrolysis of Peroxy Esters in the Presence of Bis(tributyltin) Oxide957
20.7.2 Product Subclass 2: O-Acylhydroxylamines and Related Compounds957
20.7.2.1 Synthesis of Product Subclass 2957
20.7.2.1.1 Method 1: N-Aryl-O-benzoylhydroxylamines by Reaction of N-Arylhydroxylamines with Benzoyl Chloride957
20.7.2.1.2 Method 2: N-Alkyl-O-benzoylhydroxylamines by Reduction of Oxime Benzoates958
20.7.2.1.3 Method 3: O-Aroylhydroxylamines from Aroyl Cyanides or Aroyl Chlorides959
20.7.2.1.4 Method 4: O-Acetyl-N-allyl-N-pent-4-enoylhydroxylamine from O-Acetyl-N-allylhydroxylamine961
20.7.2.1.5 Method 5: Cysteine Protease Inhibitor961
20.7.2.1.6 Method 6: Optically Active Isoxazolidin-5-ones from Nitrones962
20.7.2.1.7 Method 7: 3-Phenylcyclobutanone O-Benzoyloxime from Hydroxylamine and Benzoyl Chloride963
20.7.2.1.8 Method 8: Optically Pure Spiro-.4-sulfanes from Sulfides963
20.7.2.1.8.1 Variation 1: Stereospecific Synthesis of Optically Active (Acylamino)(acyloxy)diarylspiro-.4-sulfanes964
20.7.2.1.8.2 Variation 2: Bis(acyloxy)spiro-.4-sulfanes from Sulfoxides965
20.7.2.1.9 Method 9: Trihalomethanesulfenyl Acetates and Trifluoroacetates from Sulfenyl Chlorides965
20.7.2.1.10 Method 10: (R)-Acetyl 1,1'-Binaphthyl-2,2'-diyl Phosphite966
20.7.2.1.11 Method 11: Carboxyalkyl a-Aminoalkylphosphonic Acid Monoesters from Spirophosphoranes967
20.7.2.1.12 Method 12: A (Benzoyloxy)(benzyl)phenylphosphine--Tungsten Complex via Phospha-Wittig Reaction968
20.7.2.1.12.1 Variation 1: Synthesis of 1,2-Oxaphosphole--Pentacarbonyltungsten Complexes968
20.7.2.1.13 Method 13: Spiro-.4-selanes from Selenides969
20.7.2.1.13.1 Variation 1: Acyloxy-.4-selanes from Carboxylic Acids by Chlorination970
20.7.2.1.13.2 Variation 2: Trifluoroacetoxy-.4-selanes from Selenoxides970
20.7.2.1.14 Method 14: A Phenylselanyl Ester in Roseophilin Synthesis970
20.7.2.1.15 Method 15: Benzeneselenenyl Trifluoroacetate from Benzeneseleninic Anhydride and Diphenyl Diselenide971
20.7.2.1.16 Method 16: Spiro-.4-tellane Synthesis Using the 2-exo-Hydroxy-10-bornyl Group as a Chiral Ligand971
20.7.2.1.17 Method 17: Macrocyclic Multi-.4-tellanes by Reaction of a Telluronium Salt with Phthalate Salts972
20.7.2.2 Applications of Product Subclass 2 in Organic Synthesis973
20.7.2.2.1 Method 1: Synthesis of Adenosine Derivatives973
20.7.2.2.2 Method 2: Conversion of Cyclobutanone O-Benzoyloximes into Nitriles974
20.7.2.2.3 Method 3: Synthesis of Secondary Amines974
20.7.2.2.4 Method 4: Synthesis of N-Hydroxy Peptides975
20.7.2.2.5 Method 5: Synthesis of the N-tert-Butyl-N-(3,5-dinitrobenzoyl)nitroxyl Radical975
20.7.2.2.6 Method 6: Addition of Trihalomethanesulfenyl Acetates to Alkenes976
20.7.2.2.7 Method 7: Synthesis of Thioacetylated Lactosides976
20.7.2.2.8 Method 8: Reaction of Cyclic Phosphites with ß-Dicarbonyl Compounds977
20.7.2.2.9 Method 9: Applications of Benzeneselenenyl Trifluoroacetate978
20.7.2.2.10 Method 10: One-Pot Method for Alkene Trifunctionalization979
20.7.2.2.11 Method 11: Transformation of Allylsilanes into Allylamines via Phenyltellurinylation981
20.7.2.2.12 Method 12: Cyclofunctionalization of Alkenyl Carbamates Using Benzenetellurinic Trifluoroacetate982
20.7.2.2.13 Method 13: Diacetoxylation of Dienes by Acetoxytelluration Followed by Acetylation982
20.7.3 Product Subclass 3: Acetyl Hypohalites984
20.7.3.1 Synthesis of Product Subclass 3984
20.7.3.1.1 Method 1: Synthesis of Acetyl Hypohalites984
20.7.3.2 Applications of Product Subclass 3 in Organic Synthesis985
20.7.3.2.1 Method 1: Iodocyclization Using Acetyl Hypoiodite985
20.7.3.2.2 Method 2: Fluorination Using Acetyl Hypofluorite986
20.7.3.2.2.1 Variation 1: Direct Fluorination of Peptides Containing Tyrosine986
20.7.3.2.2.2 Variation 2: Fluorination of 1,3-Dicarbonyl Derivatives986
20.7.3.2.2.3 Variation 3: Fluorination of Nitro Compounds987
20.7.3.2.2.4 Variation 4: Synthesis of a-Fluorocarboxylates988
20.7.3.2.2.5 Variation 5: Acetoxylation of Nitrogen Heterocycles988
20.7.4 Product Subclass 4: Peroxy Esters of Sulfur, Nitrogen, and Phosphorus989
20.7.4.1 Synthesis of Product Subclass 4989
20.7.4.1.1 Method 1: Pentafluorosulfur Peroxy Esters from Acyl Fluorides and Pentafluoro-.6-sulfane Hydroperoxide989
20.7.4.1.2 Method 2: 1-(Benzoylperoxy)-2,2,6,6-tetramethylpiperidine by Direct Reaction of Dibenzoyl Peroxide990
20.7.4.1.3 Method 2: Trifluoroacetyl Peroxynitrate by Nitration of Trifluoroperacetic Acid990
20.7.4.2 Applications of Product Subclass 4 in Organic Synthesis991
20.7.4.2.1 Method 1: As Radical Initiators Used in the Bulk Polymerization of Styrene991
20.8 Product Class 8: Thiocarboxylic S-Acids, Selenocarboxylic Se-Acids, Tellurocarboxylic Te-Acids, and Derivatives994
20.8.1 Product Subclass 1: Thiocarboxylic S-Acids and Their Salts994
20.8.1.1 Synthesis of Product Subclass 1995
20.8.1.1.1 Method 1: Acylation of a Sulfur Source995
20.8.1.1.2 Method 2: Direct Thiation of Carboxylic Acids997
20.8.1.1.3 Methods 3: Miscellaneous Procedures998
20.8.2 Product Subclass 2: Thioanhydrides (Diacyl Sulfides)1000
20.8.2.1 Synthesis of Product Subclass 21001
20.8.2.1.1 Method 1: Reaction of an Acylating Agent with a Sulfide Source1001
20.8.2.1.2 Method 2: Reaction of Thiocarboxylic Acids and an Acylating Agent1004
20.8.2.1.3 Methods 3: Miscellaneous Procedures1006
20.8.3 Product Subclass 3: Acyl Sulfones1007
20.8.3.1 Synthesis of Product Subclass 31007
20.8.3.1.1 Method 1: Oxidation of Thiocarboxylic Acid S-Esters1007
20.8.3.1.2 Methods 2: Miscellaneous Procedures1008
20.8.4 Product Subclass 4: Thiocarboxylic Acid S-Esters1008
20.8.4.1 Synthesis of Product Subclass 41009
20.8.4.1.1 Method 1: Synthesis from Thiocarboxylic Acids1009
20.8.4.1.1.1 Variation 1: Alkylation of Thiocarboxylic Acids with Alkyl Halides or Related Compounds1009
20.8.4.1.1.2 Variation 2: Addition Reactions1013
20.8.4.1.1.3 Variation 3: Arylation of Thiocarboxylic Acids1015
20.8.4.1.2 Method 2: Acylation of Thiols1016
20.8.4.1.2.1 Variation 1: Acylation by Carboxylic Acid Halides1016
20.8.4.1.2.2 Variation 2: Acylation by Acid Anhydrides1019
20.8.4.1.2.3 Variation 3: Acylation by Carboxylic Acids1021
20.8.4.1.2.4 Variation 4: Acylation by Carboxylic Acid Esters1024
20.8.4.1.3 Method 3: Carbonylation Reactions1027
20.8.4.1.4 Method 4: Synthesis by Rearrangement1031
20.8.4.1.5 Method 5: Synthesis by Modification of the Acyl Group1032
20.8.4.1.6 Method 6: Synthesis by Modification of the Sulfur Unit1035
20.8.4.1.7 Methods 7: Miscellaneous Procedures1036
20.8.5 Product Subclass 5: Acylsulfenyl Halides1038
20.8.5.1 Synthesis of Product Subclass 51038
20.8.5.1.1 Method 1: Direct Halogenation of Thiocarboxylic S-Acids or Their Salts1038
20.8.6 Product Subclass 6: Acylsulfenic Acids and Derivatives1040
20.8.7 Product Subclass 7: Diacyl Disulfides1042
20.8.7.1 Synthesis of Product Subclass 71042
20.8.7.1.1 Method 1: Oxidation of Thiocarboxylic S-Acids1042
20.8.7.1.2 Method 2: Reaction of Acid Chlorides and a Disulfide Source1043
20.8.7.1.3 Method 3: Reaction of Thiocarboxylic S-Acids and Electrophilic Acylsulfanyl Donors1044
20.8.7.1.4 Methods 4: Miscellaneous Procedures1045
20.8.8 Product Subclass 8: Acyl Disulfides (Acyl Dithioperoxides)1046
20.8.8.1 Synthesis of Product Subclass 81046
20.8.8.1.1 Method 1: Synthesis from Thiocarboxylic S-Acids and Electrophilic Sulfur Species1046
20.8.8.1.2 Method 2: Synthesis from Acylsulfenyl Chlorides and Sulfur Nucleophiles1047
20.8.8.1.3 Methods 3: Miscellaneous Procedures1048
20.8.9 Product Subclass 9: S-Acyl Selenothioperoxides and Tellurothioperoxides1049
20.8.9.1 Synthesis of Product Subclass 91050
20.8.9.1.1 Method 1: Synthesis from a Thiocarboxylic S-Acid and an Electrophilic Selenium or Tellurium Fragment1050
20.8.9.1.2 Method 2: Synthesis from Acylsulfenyl Halides and Chalcogen Nucleophiles1051
20.8.9.1.3 Methods 3: Miscellaneous Procedures1052
20.8.10 Product Subclass 10: Acyl Sulfenamides and Related Compounds1052
20.8.10.1 Synthesis of Product Subclass 101053
20.8.10.1.1 Method 1: Synthesis from Thiocarboxylic S-Acids and Electrophilic Amine Sources1053
20.8.11 Product Subclass 11: Selenocarboxylic Acid Se-Esters and Tellurocarboxylic Acid Te-Esters1055
20.8.11.1 Synthesis of Product Subclass 111057
20.8.11.1.1 Method 1: Selenocarboxylic Acid Se-Esters and Tellurocarboxylic Acid Te-Esters by Alkylation of Chalcogenocarboxylic Acids1057
20.8.11.1.2 Method 2: Synthesis from Carboxylic Acids1059
20.8.11.1.3 Method 3: Synthesis from Activated Esters1062
20.8.11.1.4 Method 4: Synthesis from Carboxylic Acid Esters1065
20.8.11.1.5 Methods 5: Miscellaneous Procedures1067
20.8.12 Product Subclass 12: Other Acylselenium and Acyltellurium Compounds1069
20.8.12.1 Synthesis of Product Subclass 121070
20.8.12.1.1 Method 1: Synthesis of Selenocarboxylic Se-Acids and Tellurocarboxylic Te-Acids1070
20.8.12.1.2 Method 2: Synthesis of Diacyl Selenides (Selenoanhydrides) and Diacyl Tellurides (Telluroanhydrides)1071
20.8.12.1.3 Method 3: Synthesis of Acyl Diselenides, Acyl Ditellurides, and Mixed Chalcogen Derivatives1071
20.8.12.1.4 Method 4: Synthesis of Diacyl Diselenides and Diacyl Ditellurides1072
20.8.12.1.5 Method 5: Synthesis of Acylselenenyl Halides1072
20.8.12.1.6 Method 6: Synthesis of Acylselenium(IV) and Acyltellurium(IV) Compounds1073
Keyword Index1088
Author Index1138
Abbreviations1198

Weitere E-Books zum Thema: Chemie - Biochemie

Heißkanal-Technik

E-Book Heißkanal-Technik
Format: PDF

Der Heißkanal ist das für Qualität und Wirtschaftlichkeit entscheidende Werkzeugteil beim Spritzgießen. Die verschiedenen technischen Varianten und Konstruktionsprinzipien…

Heißkanal-Technik

E-Book Heißkanal-Technik
Format: PDF

Der Heißkanal ist das für Qualität und Wirtschaftlichkeit entscheidende Werkzeugteil beim Spritzgießen. Die verschiedenen technischen Varianten und Konstruktionsprinzipien…

Bauchemie

E-Book Bauchemie
Format: PDF

Mehr denn je ist der Entscheidungsträger in Wirtschaft und Behörde, ob als Ingenieur, Architekt oder Praktiker gefordert, breitgefächerte technische und ökologische Fragen zu…

Bauchemie

E-Book Bauchemie
Format: PDF

Mehr denn je ist der Entscheidungsträger in Wirtschaft und Behörde, ob als Ingenieur, Architekt oder Praktiker gefordert, breitgefächerte technische und ökologische Fragen zu…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Der wissenschaftliche Vortrag

E-Book Der wissenschaftliche Vortrag
Format: PDF

Der wissenschaftliche Vortrag gilt als ausgezeichnetes Instrument, um die Aufmerksamkeit auf die eigene Arbeit zu lenken. Das Handwerkszeug dazu wird kaum gelehrt, sodass öffentliche Auftritte oft…

Weitere Zeitschriften

ARCH+.

ARCH+.

ARCH+ ist eine unabhängige, konzeptuelle Zeitschrift für Architektur und Urbanismus. Der Name ist zugleich Programm: mehr als Architektur. Jedes vierteljährlich erscheinende Heft beleuchtet ...

Card Forum International

Card Forum International

Card Forum International, Magazine for Card Technologies and Applications, is a leading source for information in the field of card-based payment systems, related technologies, and required reading ...

elektrobörse handel

elektrobörse handel

elektrobörse handel gibt einen facettenreichen Überblick über den Elektrogerätemarkt: Produktneuheiten und -trends, Branchennachrichten, Interviews, Messeberichte uvm.. In den monatlichen ...

Euphorion

Euphorion

EUPHORION wurde 1894 gegründet und widmet sich als „Zeitschrift für Literaturgeschichte“ dem gesamten Fachgebiet der deutschen Philologie. Mindestens ein Heft pro Jahrgang ist für die ...

Evangelische Theologie

Evangelische Theologie

Über »Evangelische Theologie« In interdisziplinären Themenheften gibt die Evangelische Theologie entscheidende Impulse, die komplexe Einheit der Theologie wahrzunehmen. Neben den Themenheften ...